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Abstract

This paper studies a semiparametric partially linear panel model with time-
varying group-level effects. As a critical feature, the group memberships are un-
observed but time-invariant. The linear coefficients estimator is shown asymptot-
ically normal for inference. For production function estimation, the paper also
considers a two-step problem; the objective (second-step) parameter is identi-
fied by moments, conditional on the partially linear model’s potentially infinite-
dimensional parameters. The paper proposes a second-step estimator and shows
that it is consistent. The two analyses generically connect to the control function
problem under the presence of time-varying heterogeneity for panel models. With
the two-step solution, the paper extends the proxy variable method, designed for
the simultaneity problem with estimating the firm’s production function, by al-
lowing cross-correlation in firms’ productivity. As an empirical application, I
consider four Chilean manufacturing sectors from 1987 to 1996. After account-
ing for cross-correlated productivity, I find larger productivity effects on output
growth and more heterogeneous productivity among firms.
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1 Introduction

Econometricians often use panel data to control for economic agents’ unobserved hetero-
geneity. The standard fixed effects model captures only time-invariant heterogeneity, but
heterogeneity is plausibly time-varying in many applications. Furthermore, their dynamic
processes can be governed by different time-varying trends, unknown to the econometrician.

For example, a firm’s productivity is time-varying but unobserved to the econometrician.
Economic policies to increase competition can lead to disparate outcomes between the pro-
ductivity growth of efficient firms versus inefficient firms. Typically, it is nontrivial to discern
efficient firms from their inefficient counterparts by just observing the data set.

A parsimonious but flexible solution is to treat agents’ time-paths as time-varying group-
level effects and leave each agent’s group membership as unobserved. The dimension re-
duction of heterogeneity to the group-level helps to avoid the incidental parameter problem
(associated with the fixed effects model) in the dynamic panel model with a short panel
setup. Furthermore, the econometrician can recover the time-varying effects by pooling ob-
servations within the group per period and, consequently, treat time-paths’ distributions
as nonparametric. Finally, leaving group memberships as unobserved provides flexibility in
allowing differences among agents in the panel.

This paper studies the semiparametric partially linear panel model with time-varying
group-level effects. It consists of additive separable linear, nonparametric, and group-level
effects components. In many economic applications, the partially linear model is used to
control for observables’ nonlinear effects captured by its nonparametric component. The
econometrician often encounters nonparametric functions because the economic theory does
not provide the parametric restrictions in applications. The nonlinear effects can be in
the structural model or arise in the reduced-form as the control function. I expand this
workhorse’s tool-kit by introducing time-varying group-level effects with unobserved group
memberships. In section 2, the paper provides economic examples for this partially linear
model with group-level effects.

The paper applies the K-mean clustering idea to classify the group memberships and
series estimation approach for the nonparametric function. Bonhomme and Manresa (2015)
recently studied the linear model with the same group heterogeneity and used the K-mean
approach. They coined this form of heterogeneity as the grouped fixed effects. Here, I
study the grouped fixed effects in the context of the partially linear model. The series’
strategy is to approximate the nonparametric function by a linear combination of parametric
basis functions. This approach offers a computationally, simple method for nonparametric
estimation.

The paper executes the group classification and the nonparametric estimation in a one-
step approach. The asymptotic analysis is set up in the joint limit of N, T Ñ 8 but have
T as comparably small to N . This setup is consistent with the short wide panel. I provide
sufficient conditions for the linear coefficient estimator as

?
NT -consistent and asymptotic

normal - with the associated consistent covariance estimator. Furthermore, I also show
uniform consistency of the grouped fixed effects estimator, nonparametric estimator, and the
group membership classifier. Finally, I also propose an information criterion to determine
the number of groups, and the sufficient conditions for its consistency are provided.

Subsequently, the paper considers a method of moments problem, conditioning on the
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partially linear model’s parameters, and proposes a second-step estimator, based on the
sample moments conditioning on the partially linear model’s estimators. This second-step
estimates firms’ production functions under the simultaneity issue and generalises the ex-
tensively used proxy variable method in the production function literature - see Ackerberg,
Caves, and Frazer (2015). The proxy variable method assumes firms’ productivity as mutu-
ally mean independent. I extend the approach by modeling grouped fixed effects as firms’
cross-correlated productivity. Finally, the paper provides sufficient conditions for the second-
step estimator’s consistency.

As an empirical application, the paper estimates four Chilean manufacturing industry
production functions from 1987 to 1996. The period covers the Chilean economic growth
years after the Pinochet economic reforms. Furthermore, the production function literature
extensively uses the Chilean data set to study in estimating production functions, and the
paper visits this data set to account for firms’ cross-correlated productivity. After accounting
of firms’ correlated productivity, the paper finds more significant productivity dispersion
among firms, and productivity is generally more responsible for output growth than before.
For example, the difference between productivity distribution’s 75th and 25th percentiles
widen by at least 50% percent for the second largest sector, Metal. Also, productivity’s
effect on the Metal sector’s output growth gained an 18% increase, after controlling for
input changes. Furthermore, highly productive firms dominate the market share and tend
to hold more capital stock.

The paper extends Bonhomme and Manresa (2015)’s linear model by including an ad-
ditive nonparametric term. In many economic applications, the nonparametric term arises
to control for unobservables, as discussed by Blundell and Powell (2000), or to account for
nonlinear effects. Unlike the linear setup, the classification problem now involves a new
approximation error from the nonparametric estimation of m. The approximation error van-
ishes as the econometrician uses an increasingly more complex approximating model with
larger sample sizes. However, there is a feedback effect between the classification error and
the estimation error of numerous coefficients growing with the sample size. The paper shows
Bonhomme and Manresa (2015)’s classification results hold in the partially linear case if the
econometrician is sufficiently conservative in controlling the approximating model’s growth
relative to the panel’s number of periods.

As already mentioned, the paper’s classification approach is closest to the K-mean appli-
cation by Bonhomme and Manresa (2015) and Bonhomme, Lamadon, and Manresa (2017).
Parametric and nonparametric finite mixture models are more traditional approaches to clas-
sification, but they require either the parametric or estimated density. The K-mean method
avoids the need for a correctly specified or consistently estimated density. More recently,
Su, Shi, and Philips (2016) introduce the classifier-LASSO estimator as an alternative to
K-mean. Both the K-mean and classifier-LASSO base their asymptotics on the joint limit
of N, T Ñ 8.

The partially linear model also connects with the literature of semiparametric and linear
models using interactive fixed effects. As already noted by Bonhomme and Manresa (2015),
grouped fixed effects is a useful alternative to Bai (2009)’s interactive fixed effects when
N is comparably larger than T , like in the short wide panel. In particular, the linear
coefficient estimator may require bias correction by using interactive fixed effects. Freyberger
(2018), Huang (2013), and Su and Jin (2012) consider the interactive fixed effects in the

2



semiparametric setup. Like Bai (2009), they assume a strong factor setup - every cross-
section unit’s unobservable effect is a linear combination of the same factors. Hence every
unobserved effect is assumed to be on a global scale. While grouped fixed effects restrict
group members to have the same time effect, the setup does not preclude effects confined
to a local scale. The two methods complement each other, and the preference of use should
be context-dependent. On final note, Bai and Ando (2016) extend interactive fixed effects
model to be group-specific. So they allow localized effects, but their bias issue remains.

The two-step problem connects to the literature of semiparametric conditional moment
problem and generated regressors. Chen, Linton, and Keilegom (2003)’s general setup
roughly covers the problem here, and the application relates more to the specifics of Ol-
ley and Pakes (1995). However, Chen, Linton, and Keilegom (2003) restrict their discussion
to the cross-section setup with full independence in verifying their conditions. I verify Chen,
Linton, and Keilegom (2003)’s conditions under grouped cross-sectional dependency and
weak time dependency in the panel.

The paper’s production function application bases on the proxy variable approach covered
in a series of papers - Olley and Pakes (1996), Levinsohn and Petrin (2003), and Ackerberg,
Caves, and Frazer (2015). The proxy variable identifies the firm specific productivity, and
the introduction of grouped fixed effects captures the cross-correlation in firms’ productiv-
ity. The introduction relaxes productivity’s first-order Markov assumption, mutual mean
independence, and the scalar unobservable assumption in the proxy variable’s setup.

Compared to alternatives, the proxy variable method is a minimalist in data requirement
and also is flexible on the assumptions of productivity’s dynamic and the market structure.
The paper’s extension enhances the method while it preserves the method’s niche. For
interpretation, the group structure partitions firms into the spectrum of high vs. low mean
productivity level.

On the last note, Kasahara, Schrimpf, and Suzuki (2017) also studies production function
heterogeneity with classification. However, they classify based on the parametric finite mix-
ture model and make full assumptions on the market structure and productivity’s dynamic.
Here, the paper avoids making these assumptions. More recently, Cheng, Schorfheide, and
Shao (2019) apply multidimensional K-means clustering to estimate different output elas-
ticity and mean-level productivity efficiently; when the firm’s productivity is autoregressive.
Here, I assume homogeneous output elasticity but allow a more general productivity process.

The rest of the paper is organized as follows. Section 2 presents the partially model,
and section 3 covers the two-step estimator for the production function. After the two-step
estimator, section 4 presents the Monte Carlo simulation results. Then section 5 presents
the empirical application. Finally, section 6 provides the conclusion. All proofs and supple-
mentary materials are provided in the appendix.

2 Partially Linear Model

2.1 Model and Estimation

The Setup and Notations

In this section, I set up the notation for partially linear model. Subsequently, I will explain
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my estimation strategy. The partially linear semiparametric panel model is,

yit � x1itθ
0 �m pzitq � α0

it � εit, i,� 1, ..., N, t � 1, ..., T, (1)

where the variables pyit, xit, zit, αit, εitq P R�X �Z�A�R pZ � Rd1 , X � Rd2 , and A � Rq,
the unknown function m : Z Ñ R, and the parameter θ0 P Θ, with Θ � Rd2 .

There are G0 fixed groups, and each unit belongs to a group. The unit’s membership is
indexed as g0

i pP ΓG0 :� t1, ..., G0uq and its membership is time-invariant. Within a group g,
all its members share the time trajectory αgt.

So,

α0
it �

$'&'%
α0

1t g0
i � 1

...
...

α0
G0t g0

i � G0.

(2)

However, g0
i is treated as unobserved from the data. From the panel data, the econometrician

observes only pyit, xit, zitq. The pxit, zitq can be endogenous to α0
g0i t

but are sequentially

exogenous to εit. For identification, I normalise m pz1q � 0 for some z1 P Z because m is
nonparametric. Under appropriate rank conditions, the partially linear model’s parameters
are identified.1 The model can serve to facilitate inference on θ0 or to estimate θ, m, and α
for a functional estimator’s use, i.e. to act as generated regressors. Examples are provided
in subsection 2.2.

Estimation

To estimate the parameters
�
θ0,m, αgt, g

0
i

�
, I simultaneously apply two econometric tech-

niques: K-mean clustering to classify g0
i and series approximation to estimate m.

K-Mean Clustering Series Approximation: Power Series

The principle of K-mean is to detect the group structure, g0
i , by partitioning the data

around centroids. The left graph shows K-mean in action. Dotted observations are classified

1Consult Appendix-F for more details.
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with color around four centroids, marked by diamond shapes. In the partially linear model’s
context, the centroids can be interpreted as the parameters, and the dotted observation’s
distance from its centroid is the residual εit.

The principle of series approximation is to use the sum of smooth functions to approx-
imate an unknown function, m. The right graph shows this principle in action. The poly-
nomials of x are trying to approximate Sin pxq, and the approximation error vanishes by
increasing the polynomial degree. For smooth function m, the series approximation can be
thought of as m’s Taylor approximation.

Next I describe how to implement the two procedures jointly. Suppose the econometrician
assumes the number of group is G and estimates the non-parametric mp�q with a vector of
basis functions, pKp�q � pp1 p�q , ..., pK p�qq, where ps p�q : Z Ñ R, for s � 1, ..., K, and K
is an integer. Furthermore, βK � pβ1K , ..., βKKq1 is the vector of coefficients for pK pzitq to
approximate m and βsK P BK . Popular example of pK includes power series, Fourier series,
and B-splines.

The group assignment γ : t1, ..., Nu Ñ ΓG, where γ piq � gi and ΓG :� t1, ..., Gu, denotes
the collection of group membership parameters - with γ0 :� tg0

i uNi�1. The partially linear
model’s estimator comes from minimizing the least-squared criterion:�

θ̂, β̂K , α̂, γ̂
	
P arg min
θPΘ,βKPBK ,αPAG�T ,γPΓNG

Q̂pθ, βK , α, γq, (3)

where Q̂
�
θ, βK , α, γ

� � 1

NT

Ņ

i�1

Ţ

t�1

�
yit � x1itθ

K � pK pzitq1 βK � αgit
�2

. The estimator of m

is m̂pzitq � pKpzitq1β̂K .
The least-squared minimization problem is non-linear in γ. Next, I provide a simple

local optimization algorithm to solve the problem. The optimization is local because it has
the least-squared solution as a convergent point but its set of convergent points may not be
singular.

Algorithm 1: Estimating θ, βK , gi, and αgt

Initialize
 
ĝir0s

(N
i�1

.;

Using
 
ĝir0s

(N
i�1

, estimate θ̂r0s, β̂
K,j
r0s , and α̂gtr0s by minimizing the least-squared

criterion;
while convergence is not achieved on the kth iteration do

Using the kth iteration’s θ̂rks, β̂
K,j
rks and α̂gtrks, update

 
ĝirk�1s

(N
i�1

to minimize the

least squared criterion;

Using
 
ĝirk�1s

(N
i�1

, estimate θ̂rk�1s, β̂
K,j
rk�1s and α̂gtrk�1s by minimizing the

least-squared criterion;
Check for convergence of the modified least squared criterion;

end

The algorithm is convergent because it decreases the least-squared criterion at every
step. For the global optimum, it is paramount to compute and compare local solutions using

different initial arrangements of
 
ĝir0s

(N
i�1

.

5



Selection

In practice, the econometrician has to choose a G without knowing G0. I assume the econo-
metrician knows an upper bound Gmax and a lower Gmin for G0, i.e. Gmin ¤ G0 ¤ Gmax. For
panel models, the information criterion is a popular tool for selecting the latent structure’s
complexity - see Bai and Ng (2002) and Su, Shi, and Philips (2016). For my partially linear
model, the Information Criterion function is

IC pGq � Q̂G � νG, (4)

where Q̂G is the minimized least-squared criterion from using G groups and for some positive
constant ν. The information criterion estimate of G0 is

Ĝ0 P arg min
GPtGmin,...,Gmaxu

IC pGq . (5)

I provide guidance in choosing ν in subsection 2.4 and provide an explicit example in
section 4. The paper also provides the information criterion’s consistency result.

2.2 Applications

Here, the paper provides three examples for the partially linear model’s application. The
first two examples’ interest is on the coefficient θ. However, Example 3 estimates the firm’s
production function and uses the partially linear model’s nonparametric component m. I
only briefly sketch its estimation procedure, but section 3 expands the discussion on the
production function estimation. Section 4 provides the Monte Carlo simulation covering
Example 1 and Example 3. Section 5 covers an empirical application based on a more de-
veloped version of Example 3.

Example 1: (Income Growth vs. Inequality Growth) Banerjee and Duflo (2003) stud-
ies whether an increase in income inequality overall promotes or hinders

�
θ0

1

�
income growth

in a panel of countries. In their equation (9), income growth is affected by both inequality
growth and level. However, only inequality growth is assumed to have a linear effect, while
the inequality level may have a non-linear effect. Here, I present the simplified version as,

∆incomeit � θ0
1∆Giniit � θ0

2∆incomeit�1 �m pGiniitq � α0
g0i t

� εit, (6)

where the inequality level is measured by the Gini coefficient. Different economic policies
and political institutions have varying effects on income growth. In their setup, a time-
invariant country fixed effects captures the net outcome of these effects. Here, I propose to
model these net effects as time-varying grouped fixed effects because policies’ effects may
change over time. The groups can partition countries by their independence of the judiciary,
and market-based vs. central planning spectrum. To manually define the right partition is
conceptually difficult and so it is practical to estimate the memberships.

Example 2: (A Stylized Wage Regression) The interest is in the linear effect pθ0q of an
additional year of education on logged wage for a particular sector and the researcher uses
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a balanced panel of workers. Workers have unobserved but time-varying skill sets affecting
their marginal product of labor. Their skill sets may change over time, and I propose to
model them as grouped fixed effects. The stylized model is

log pwageitq � θ0educit � α0
g0i t

� uit. (7)

However, the workers self-select into the data set, and this fact induces sample selection
concerns. Here, I show two selection rules that are independent of α0

g0i t
.

Selection rule 1: (Wealth Effects) The worker only attends work if he can afford to dele-
gate home-keeping tasks and some other life maintenance activities. These activities cost the
worker vit monetary value and, hence, the worker is only in the sample because f pWealthitq ¥
vit, where f is strictly increasing. Then the reduced form regression is,

log pwageitq � θ0educit � α0
g0i t

�m pWealthitq � εit, (8)

wherem pWealthitq � E
�
uit|f�1 puitq ¥ Wealthit

�
and εit � uit�E

�
uit|f�1 puitq ¥ Wealthit

�
.

Selection rule 2: (Occupational Choice) The worker has an outside option in another sector
s which pays

log pwageitq � θ0educit � α0
g0i t

� uit,s.

Here, α0
g0i t

can be thought of as transferable skills set while ε is sector-specific skills set. So

the worker is only in the sample because of uit ¥ uit,s. Suppose there is a variable zit that
can act as a proxy of uit,s, i.e. uit,s � f pzitq where f is strictly increasing. Then the selection
rule can be reduced to f�1 puitq ¥ zit and provides the reduced form regression,

log pwageitq � θ0educit � α0
g0i t

�m pzitq � εit, (9)

where m pzitq � E
�
uit|f�1 puitq ¥ zit

�
and εit � uit � E

�
uit|f�1 puitq ¥ zit

�
.

The sample selection problem is an example of the general control function approach to
control endogeneity. Generally, the partially linear model covers control function applica-
tions where the grouped fixed effects is not in the control function.

Example 3: The econometric objective is to estimate the output elasticity pβk, βlq of the
log-linearized Cobb-Douglas production function,

yit � βllit � βkkit � ωit � α0
g0i t

� εit, (10)

where yit, lit, and kit are logged output, labour, and capital, respectively. The sum ωit�α0
g0i t
�

εit represents productivity but the firm can only learn ωit � α0
g0i t

when it chooses inputs. ωit

is the firm’s specific shock and independent over i. Furthermore, α0
g0i t

is a productivity shock

shared among the same typed firms - it captures the cross-correlation in firms’ productivity.
The firms are partitioned into groups by the productivity spectrum, e.g. high productivity
type vs. low productivity type.
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The regression has a simultaneity problem because the firm uses the information of
ωit � α0

g0i t
to choose plit, kitq and the econometrician does not observe ωit � α0

g0i t
. Neglecting

the simultaneity problem leads to “transmission bias” in the output elasticity estimates.
Like in Olley and Pakes (1996) and Levinsohn and Petrin (2003), I assume there is a proxy
variable υit such that ωit � h plit, kit, υitq, where h is an unknown function. The h function
as independent of α is discussed in section 3 and section 3 also provides an example in the
structural value-added setup. For brevity, I restrict my discussion to just the estimation
procedure here.

The proxy variable turns the above regression into the reduced form,

yit � m plit, kit, υitq � αg0i t � εit, (11)

where m plit, kit, υitq � βllit � βkkit � h plit, kit, υitq. The nonparametric nature of h means
the reduce form can’t identify the output elasticity but isolates the productivity shocks
α0
g0i t

� εit. The first-step is to estimate the nonparametric function m with the partially

linear model estimator. Then guessing output elasticity pβk, βlq provides an estimate of ωit
as m pkit, lit, υitq � βkkit � βllit � ν2. Assuming ωit is mean zero and independent over time
then the output elasticity can be identified from lagged inputs’ orthogonality condition to
ηit, i.e.

E

����kit�1

lit�1

1

�
pm pkit, lit, υitq � βkkit � βllit � νq
�� � 0. (12)

This formulation introduces a method of moments estimator for pβk, βlq, conditioning on the
first-step’s estimates.

The section 3 generalises ωit as a first-order Markov process and allows smooth Hicksian
neutral technology. Furthermore, the section discusses the proxy variable assumption in
more detail. Furthermore, the paper provides the general second-step method of moments
estimator and sufficient conditions for its consistency.

2.3 Heuristics

It is instructive to motivate the theory’s purpose heuristically before presenting it. The series
estimation requires the researcher to choose the number of basis terms to approximate the
unknown function. Bonhomme and Manresa (2015) provides asymptotic classification results
for the linear model where there is an exact number of regressors. The series’ approximation
error of the unknown vanishes in the asymptotic by increasing the number of basis terms
with the sample size. The theory has to extend the classification results by accounting for
an increasing number of regressors.

To facilitate the discussion, I use an univariate semiparametric model:

yit � m pzitq � α0
g0i t

� εit, g
0
i P t1, 2u, (13)

2ν is normalization parameter to account for m’s intercept as not separably identifiable from αgt.
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where εit is i.i.d., mean zero, and independent of α0. The basis is the power series, pK pzitq ��
zit, ..., z

K
it

�1
. Basing classification on α0 and parameter βkK , the ith unit from group 1 is

misclassified if

Ţ

t�1

�
yit �

Ķ

k�1

zkitβkK � α0
2t

�2

 
Ţ

t�1

�
yit �

Ķ

k�1

zkitβkK � α0
1t

�2

. (14)

This inequality is equivalent to,°T
t�1 pα0

1t � α0
2tq2

T
  “Approximation Error”�op p1q�

Ķ

k�1

�
β0
kK � βkK

� �°T
t�1 z

k
it pα2t � α1tq
T

�
,

where β0
kK is the target parameter of βkK .

For identification purposes, I assume the left-hand side has a positive probability limit,
i.e., the group effects are well-separated from each other. For consistent classification, the
right-hand side needs to vanish asymptotically. The linear model does not have an approxi-
mation error term. Generally, the approximation error disappears by requiring the number
of basis terms, K, to grow. But rapidly increasing the K terms can lead to an explosion of
the third term even when

�
β0
kK � βkK

�
is small. This third term can be referred to as the

“estimation error”.
The inequality also reveals a feedback back chain. When the estimation error is signifi-

cant, classification error is likely to occur. Furthermore, it is intuitive to have a significant
estimation error when the classification error is substantial. The standard series theory does
control for the estimation error’s magnitude, but it does not account for this feedback effect.

I propose to address this feedback effect by conservatively choosing K relative to T .
This strategy allows me to mitigate the estimation error’s impact. As T grows large, K is
permitted to increase for the approximation error to vanish at the asymptotic.

The presented theory is to ensure asymptotic classification holds in a “worst-case” sce-
nario. The inequality also suggests the above concern can be a second-order issue if the
group effects are significantly well-separated from each other. However, the theory requires
them as well-separated and does not assume a lower positive bound on the separation. Fur-
thermore, the approximation error may be negligible in practice with just finitely many K
terms when the unknown function is sufficiently smooth.

Besides the classification result, I provide sufficient conditions to derive θ̂ as asymp-
totically normal with its consistent covariance estimator. This result provides a central
limit theorem when observations are weakly dependent over time and dependent over the
cross-section via α0. Consequently, I also derive the estimator of αg0i t and m as uniformly
consistent to help the subsequent two-step estimator analysis. Finally, I provide sufficient
conditions for the information criterion to estimate G0 consistently when it is unknown. Fur-
thermore, section 4 provides an explicit example. However, analysing post-selection effects
is not considered here.

2.4 Asymptotic Theory

This section first proves the consistency of θ̂ and m̂, as presented in Theorem 1. Theorem
2 proves the consistency of Ĝ when the information criterion’s penalty satisfies appropriate
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conditions. Then Theorem 3 shows classification error disappears asymptotically, i.e. ĝi is
uniformly consistent over i. Finally, Theorem 4 proves the asymptotic normality of θ̂ and
uniform consistency of α̂ĝit.

The paper assumes the series pK pzitq to satisfy some high-level properties. For interpreta-
tion, high-level assumptions are elaborated for the power series and the B-spline series. The
standard theory for the power series and the B-splines assume Z as a compact support. So
the high-level assumptions are discussed with examples in the context of Z being compact.
Chen (2007) provides other examples of series for the compact support. The discussion of
the power series and B-splines can also apply to those series. All the assumptions are se-
quentially presented before theorems and progressively stronger to derive more demanding
results. The provided asymptotic theory considers N, T,K Ñ 8, but they grow at different
rates. In particular, N is assumed to be significantly larger than T . Appendix-A collects all
the asymptotic results.

Notation: Let }�} be the Euclidean norm, }f}8,Z :� sup
zPZ

}f pzq}, qit �
�
x1it pK pzitq1

�1
,

α �  tαgtu8t�1

(G0

g�1
, and xit � pxit,1, ..., xit,d2q1.

Assumption 1. (Series approximation)
There exist a constant µ ¡ 0 and the sequence

 �
ξK , β

0,K ,qK

�(8
K�1

,
�
ξK , β

0,K ,qK

� P R� �
BK � R�, such that:

1. }pK}8,Z ¤ ξK, and ξK Ñ 8, as K Ñ 8.

2. sup
βPBK

max
l�1,...,K

}βlK} ¤ qK, where β � pβ1K , ..., βKKq, and qK is uniformly bounded away

from 0.

3.
��m� ppKq1β0,K

��
8,Z � OpK�µq and β0,K P BK.

Assumption 1.1 requires every finite-termed series to be bounded over the support Z. In
the following assumptions, the bound ξK should increase at a certain rate in proportion to
the sample size. Newey (1997) provides a ξK as proportional to K for power series 3 and

?
K

for B-splines. Under Assumption 1.3, the series’ approximation error of m over the entire
support Z vanishes as the series’ terms increase. The µ parameter captures the smoothness
of the m function for both power series and B-splines. Newey (1997) shows µ � δd{d1, where
δd is number of m’s continuous derivatives. Analogous Assumption 1.1 and Assumption 1.3
can be found in Newey (1997). Assumption 1.2 introduces a notation on the upper bound of
β0,K ’s magnitude. The bound qK may increase over K subjected to the rates discussed later
on. qK is constant for the power series if Assumption 1.3’s approximation is also absolutely
convergent in a neighborhood outside the unit ball. The examples include m being the
sum of exponential functions, polynomials, and logarithms (when log takes values uniformly
bounded away from zero). When qK is constant, the subsection’s rates can drop the factor
qK .

Assumption 2. (Compactness)
A and Θ are compact.

3The proportionality comes the orthogonal polynomial; which it spans the same linear space as the power
series do.
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The compactness of A rules out nonstationary αgt process with its mean level growing
over time. This same restriction is assumed by Bonhomme and Manresa (2015).

Assumption 3. (Dependency and moment restrictions)
There exist a constant M ¡ 0 such that

1. sup
iPt1,...,Nu

E
�}xit}4

� ¤M and

∣∣∣∣∣ 1

NT

Ņ

i�1

Ţ

t�1

Ţ

s�1

Erεitεisx1itxiss
∣∣∣∣∣ ¤M .

2. E ruits � 0 and sup
iPt1,...,Nu

E
�
u4
it

� ¤M .

3.

∣∣∣∣∣ 1

N2T

Ņ

i�1

Ņ

j�1

Ţ

t�1

Ţ

s�1

Covpεitεjt, εisεjsq
∣∣∣∣∣ ¤M .

4. |E rεisεit|zis, zits| ¤M and E rεisεjt|zis, zjts � 0 for any i � j.

Assumption 3 restricts the dependency of εit on pxis, zisq. Both xis and zis can be
predetermined regressors. Overall, similar assumptions can be found in Bonhomme and
Manresa (2015) and Bai (2009). However, Assumption 3.4 does not allow unconditional
cross-correlation of εit and it also imposes bounded conditional heteroskedasticity and serial
correlation. The bounded conditional heteroskedasticity assumption is standard in the series
literature. If zit is strictly exogenous then cross-correlation of εit can be restored by adopting
Lee and Robinson (2016)’s approach.

Assumption 4. (Rank Condition)

Let N� :� t
N

G
u� 1 and S � t1, ..., Nu. If S has at least N� units then

P

��λmax

���
1

TNN2
S

Ţ

t�1

¸
iPS

�¸
jPS

pqit � qjtq
��¸

jPS
pqit � qjtq

�1��1
�
  c

�
 Ñ
as N,T,KÑ8

1,

where c ¡ 0, λmax is the largest eigenvalue, and NS �
Ņ

i�1

ti P Su.

Assumption 4 provides the rank condition to compute the least square estimator of�
θ, βK , α

�
, based on the estimated group memberships. For an arbitrary large group with at

least N� memberships, Assumption 4 requires sufficient cross-sectional variation of xit and
pK pzitq within the group. Hence, xit and pK pzitq excludes constants.

Assumption 5. (Rates and smoothness for consistency)
As N, T,K Ñ 8,

1. K
1
2
�µξ3

KqK Ñ 0.

2.
ξ3
K

?
KqK?
N

Ñ 0.

11



3.
ξ2
K

T
1
4

Ñ 0.

Assumption 5.1 controls effects from the vanishing approximation error. For power series
and B-splines, Assumption 5.1 assumes m to be sufficiently smooth. Under the discussion
of Assumption 1, when m has at least 4d1 continuous derivatives and qK is bounded, e.g.,
real analytic functions, then Assumption 5.1 holds for both power series and B-splines.
Assumption 5.2 and 5.3 restricts the series terms to asymptotically grow at a slower rate
than N and T . Assumption 5.2 controls effects from the estimation error of the series’

coefficients. However, Assumption 5.2’s rate can be weakened to
ξ3
K

?
KqK?
NT

Ñ 0 under

the weak time dependency condition as specified in Assumption 9. In the cross-section
setting, Newey (1997)’s semiparametric model and Qi (2000)’s partially linear model asks

for
ξK
?
K?
N

Ñ 0. Assumption 5.2’s rate is slower partly because parameters and group

memberships are jointly estimated.
Assumption 5.3 is introduced to handle the unobserved group memberships. As men-

tioned in the outline, the rate expresses the caution of conservatively choosing K relative to
T . Usually, the panel data literature allows the researcher to increase the basis’ dimension
by having a larger N . In contrast, Assumption 5.3 cautions against that behavior and leads
to a more restrictive rate in the short wide panel setup.

Theorem 1. (Consistency) Suppose Assumptions 1-5 hold and G ¥ G0, then 1) θ̂
PÑ θ0,

and 2) }m� m̂}8,Z PÑ 0, as N, T,K Ñ 8.

Whenever the number of used groups is not smaller than the truth, Theorem 1 provides
the consistency of θ̂ and the uniform consistency of m̂. For just θ̂’s consistency, all Assump-
tion 5’s rates can be scaled down by ξ2

K . However, having ξ2
K helps to show m̂’s consistency.

Moreover, subsequent results on classification and θ̂’s asymptotic normality depend on m̂
being consistent. Improving Assumption 5’s rates is an avenue for future work.

Assumption 6. (Identifying Groups)

1. There exists a constant c ¡ 0 such that,

(a) when g � g1, then plim
TÑ8

1

T

Ţ

t�1

�
α0
gt � α0

g1t

�2 ¡ c, for a c ¡ 0. This lower bound c

applies to all pairs of g and g1.

(b) for a real-valued process thtu8t�1 satisfying 8 ¡ plim
TÑ8

1

T

Ţ

t�1

h2
t ¡

1

2
c, then

plim
TÑ8

1

T

Ţ

t�1

h2
t ¡ plim

N,T,KÑ8

�
1

NT

Ņ

i�1

Ţ

t�1

htq
1
it

��
1

NT

Ņ

i�1

Ţ

t�1

qitq
1
it

��1 �
1

NT

Ņ

i�1

Ţ

t�1

qitht

�
.

2. Let Ng �
Ņ

i�1

tg0
i � gu. For any g P t1, ..., G0u, Ng

N
Ñ

NÑ8
κg ¡ 0.
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3. Assume G � G0.

Assumption 6 provides the conditions to identify the groups. Assumption 6.1.a requires
groups to be separately identified from their time-paths. Assumption 6.1.b is an identification
assumption for the information criterion selection to avoid under-selecting. It basically says
the differences between the groups effects should be far away from the regressors’ spanned
linear space. And Assumption 6.2 assumes each group’s memberships is proportionally
significant to the overall cross-section’s sample size.

Corollary 1. (Time-path consistency) Under Assumption 1-5, 6.1.a, 6.2, and G0 ¤ G,

for any g P t1, ..., G0u, there exists a ĝ such that plim
N,T,KÑ8

1

T

Ţ

t�1

�
α0
gt � α̂ĝt

�2 � 0. Under

Assumption 6.3, ĝ is unique.

With Corollary 1, each true group’s αgt time-path is matched asymptotically close to
an estimated group’s estimated time-path on average over time. This is weaker than uni-
form consistency but uniform consistency is achieved after additional stronger assumptions.
Uniform consistency further provides consistency of α̂ĝit at every i and t.

Assumption 7. (Rates and smoothness for selection)
As N, T,K Ñ 8,

1. νT Ñ 0.

2. T
1
4νT Ñ 8.

3.
T

1
4 ξKqK

?
K?

N
� Op p1q.

4. T
1
4K

1
2
�µξKqK � Op p1q.

5. G0 P tG,Gu.
Under Assumption 7.5, the information criterion minimizes over a set of specifications

containing G0. Under a large sample size, the logic behind the information criterion relies
on over-specifying G

�¡ G0
�

to yield negligible improvement and under-specifying G
�  G0

�
leaves significant room for improvement in the least squared fit. To detect underfitting, As-
sumption 7.1 requires the penalty to vanish asymptotically. Moreover, to detect overfitting,
Assumption 7.2 requires the penalty to vanish slowly at a rate dependent on only T . The T
only dependency is set up under the assumption of N as comparably larger than T . In that
environment, it is consistent with the information criterion literature to have the error rate
as independent of N . For example, Bai and Ng (2002) have their rates as independent of N

in the interactive factor setup when

?
T

N
Ñ 0 - which is consistent with Assumption 7.3.

The information criterion’s strategy for consistent selection also relies on the difference
between the criteria, from over-specified and exactly specified, to vanish at a rate faster

13



than the penalty. Assumption 7.3 and 7.4 execute this task in combination. Furthermore,
Assumption 7.34 and 7.4 act as Assumption 5.1 and 5.2 for the selection purpose, respectively.

Theorem 2. (Selection) Suppose Assumption 1-4, 6.1, 6.2, and 7 hold, then lim
N,T,KÑ8

PpxG0 �
G0q � 1.

For the previous specific penalty, the selection is consistent for each λ. Hence, the data-
driven choice of pre-specified λs is also consistent because the pre-specified set is finite; hence,
the criterion is consistent for any λ of the set.

Theorem 2 shows the information criterion’s estimate of G0 is asymptotically consistent.
Knowing the true number of groups is assumed for the subsequent theorems. However, the
subsequent theorems do not account for the post-selection estimator.

Assumption 8. (Tail-bounds)

1. There exist constants r1 ¡ 0 and r2 ¡ 0 such that, P p|εit| ¡ mq ¤ e
1�

�
m
r1

	r2
, for all i, t

and m ¡ 0. For any i P t1, ..., Nu,.

2. For any g0
l , g

0
k P t1, ..., G0u, E

��
α0
g0l t

� α0
g0kt

	
εit

�
� 0.

3. There exists constants r3 ¡ 0 and r4 ¡ 0 such that, tεitu8t�1 ,
!
αg0j t � αg0i t

)8
t�1

and!�
αg0j t � αg0i t

	
εit

)8
t�1

are strongly mixing process, with mixing coefficient ρi ptq, and

sup
iPt1,...,Nu

ρi ptq ¤ e�r3t
r4 , for any g0

l , g
0
k P t1, ..., G0u.

4. There exist constants M� ¡ 0 and δ ¡ 1 such that,

sup
iPt1,...,Nu

T δP

�
1

T

Ţ

t�1

}xit} ¥M�

�
Ñ 0

and
N

T δ�1
Ñ 0, as T,N Ñ 8.

Assumption 8.1, 8.2, and 8.3 assume tail bounds and weak dependency to control for
classification error on the group membership estimate. Assumption 8.4 holds if xit’s support
is compact, and N is comparable to some power of T . Besides the comparable size of N
and T , Assumption 8 is near identical to Bonhomme and Manresa (2015)’s Assumption 2
for their linear model case.

Theorem 3. (Group Consistency) Let H0
g :� ti | g0

i � gu and Ĥg :� ti | ĝi � gu. When

G0 � G and Assumption 1-6 and 8 hold, for any g P t1, ..., Gu, there exists g0 P t1, ..., G0u
such that P

�
Ĥg � H0

g0

	
Ñ 1, as N, T,K Ñ 8.

4Just like Assumption 5.2, Assumption 7.3 can be weakened to
T

1
4 ξKqK

?
K?

NT
� Op p1q under weak time

dependency.
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When the exact total number of true groups is used, Theorem 3 says every estimated
group asymptotically match to a true group in memberships. After some re-labeling of
groups, Theorem 3 implies the uniform consistency of the group membership estimate, i.e

P

�
sup

iPt1,...,Nu

|ĝi � g0
i | ¡ 1

�
� op p1q. Furthermore, Theorem 3 also leads to

�
θ̂, m̂, α̂

	
as

asymptotically equivalent to the Oracle estimator
�
θ̃, β̃K , α̃gt

	
. The Oracle estimator mini-

mizes the least-squared criterion based on the true memberships.
The next assumption provides the additional conditions leading to uniform convergence

of α̂ĝit, rate for m̂, and the asymptotic normality of θ̂. To simplify presentation, I assume the
moments, conditional of α, are identical within group. The proof uses the extended version,
allowing heterogeneous conditional moments within the group. The extended version is
provided in Appendix-A.

Assumption 9. (Asymptotic Normality)

1. There exists a δm ¡ 0 such that max
 ��θ � θ0

�� , ��βK � β0,K
��(   δm implies βK P BK

and θ P Θ. Furthermore, α̂gt is the interior solution.

2. For each i P t1, ..., Nu,
(a) Conditional on α, tpxit, zit, εitqu8t�1 is independent over i.

(b) Both conditional and unconditional on α, pxit, zit, εitq’s alpha mixing coefficient
satisfies the uniform bound described in Assumption 8.3 up to a scale.5

(c) εit is mean independent of xit, zit, and α.

(d) the pxit, zit, εitq process is stationary.

3. With some constant Cxp ¡ 0, for any fixed K and g P t1, ..., G0u, the matrix

1

T

Ţ

t�1

E
�pqit � E rqit|αsq pqit � E rqit|αsq1 |α, g0

i � g
�1
s

smallest eigenvalue is bounded below by Cxp.

4. Let v pzitq :� pE rxit,1|zits , ...,E rxit,d2|zitsq.

(a) There exist sequences
! 
βKx,j

(8
k�1

)
j�1,...,d2

and constants tcvjuj�1,...,d2
such that

sup
jPt1,...,d2u

���vj � cvj �
�
pK

�1
βKx,j

���
8,Z

� O
�
K�µ

�
,

as N, T,K Ñ 8, where µ is the constant in Assumption 1.

(b) There exists a positive constant Mm such that

5It is not necessarily to assume Assumption 9.2 shares the same parametric values of r3 and r4 with
Assumption 8.3. To avoid extra notation, I keep them as the same.
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� sup
tPt1,...,T u

sup
iPt1,...,Nu

E
�
m pzitq2

� ¤Mm,

� sup
tPt1,...,T u

sup
iPt1,...,Nu

E
�}xit}6

� ¤Mm,

� sup
tPt1,...,T u

sup
iPt1,...,Nu

E
�}pxit � E rxit | zits � E rE rxit|αs � E rxit|αs |zitsq εit}5

� ¤Mm,

and

� sup
tPt1,...,T u

sup
iPt1,...,Nu

E
�}xit � E rxit | zits � E rE rxit|αs � E rxit|αs |zits}6 |tzisuTs�1, α

� ¤
Mm for any α and tzisuTs�1, almost surely.

(c) There exist a sequence of constants Πx such that sup
kPt1,...,Ku

��βKx,j:k�� ¤ Πx and

?
TΠx

?
K?

N
Ñ 0, as N, T,K Ñ 8.

5. (a) There exists a δ1 P
�

0,
1

2



, such that

i.
T

N δ1
Ñ 0, as N, T,K Ñ 8.

ii.
ξ2
K

?
K

N
1
2
�δ1
?
T
Ñ 0, as N, T,K Ñ 8.

iii.
N δ1ξK
Kµ

Ñ 0, as N, T,K Ñ 8.

iv.
ξK
?
KΠK

N
1
2
�δ1

Ñ 0, as N, T,K Ñ 8.

(b)
T
?
Kξ2qK?
N

Ñ 0, as N, T,K Ñ 8.

(c)

?
NTξK
Kµ

Ñ 0, as N, T,K Ñ 8, where µ is the constant in Assumption 1.

(d)
KξK
T

Ñ 0, as N, T,K Ñ 8.

Assumption 9 provides sufficient conditions to derive the asymptotic distribution of θ̂
and uniform consistency of α̂ĝit. The proof uses the usual least squared formula but this

requires the solution of
�
θ̂, β̂K , α̂

	
to be in the interior. Theorem 1 and Assumption 9.1

provide
�
θ̂, β̂K

	
being in the interior with asymptotic probability one. However, until now,

α̂gt is shown only to be mean-squared consistent over the sample path. This result is not
enough to force it into the interior. However, verifying the solution as the interior is simple
in practice.

Assumption 9.2 specifies weak dependency conditions. In the cross-section, it assumes α
as the only source of cross-correlation for pxit, zitq 6. In time-series, the weak dependency is

6Potentially, the cross-section can allow weak dependency after conditioning on α. One possible extension
is to use Lee and Robinson (2016)’s setup to model cross-sectional dependency. But, for simplicity, this weak
dependency is not considered here.
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described by mixing conditions. For example, pxit, zitq have the said alpha mixing properties
if they are functions of independent processes with these alpha mixing properties.7

Assumption 9.3 strengthens the rank. The moments are defined conditionally because
cross-sectional independence happens only conditional on α. But, conditional on α, the
regressors qit are not stationary. Hence, the condition bases on an average of over T .

From Assumption 9.4.a, the same series basis can uniformly approximate the conditional
expectation of xit - Qi (2000) uses a similar setup. Also, it assumes the conditional expec-
tation of xit is a homogeneous function over the cross-section. This restriction still allows
xit to be heterogeneous in expectation from the heterogeneity of distribution of zit over the
cross-section.

From Assumption 9.5, N is assumed as larger than T to ignore the incidental parameter
problem of αgt. So 9.5.b provides the rate for it to happen. Again, Assumption 9.5.c assumes

m is sufficiently smooth such that scaling by
?
NT still leaves the approximation error to

be asymptotically negligible. Newey (1997) and Qi (2000) provide their analogous versions
of Assumption 9.5.c to derive the asymptotic distribution. Assumption 9.5.a rates ensure
the estimate of α̂ĝt is uniformly consistent, over T , under the non-parametric estimation of
m. However, Assumption 9.5.a is only relevant for the two-step problem and can be ignored
for θ̂’s asymptotic normality. Assumption 9.5.d rate ensures the θ’s asymptotic covariance
matrix is convergent to its population analog under the non-parametric estimation of m.
However, it is not needed to derive the consistency rate provided in the next theorem - thus,
the two-step estimation can ignore this rate.

Theorem 4. (Asymptotic Normality and Uniform Convergence)
Under Assumption 1-6 and 8-9,

1.
?
NT

�
θ̂ � θ0

	
ñ N p0,Σθq where

a Σθ �
�

G0¸
g�1

κgψ
xz
g

��1

ψxε

�
G0¸
g�1

κgψ
xz
g

��1

,

b ψxzg � lim
NÑ8

�°
i:g0i�g

E
�pxi1 � ψxxε pzi1, αqq pxi1 � ψxxε pzi1, αqq1

�
Ng

�
,

c ψxε � lim
NÑ8

°N
i�1

�°8
t�1 E

�pxi1 � ψxxε pzi1, αqq pxit � ψxxε pzit, αqq1 εi1εit
��

N
, and

d ψxxε pzit, αq � E rxit | zits � E rxit | αs � E rE rxit|αs |zits.

2. sup
iPt1,...,Nu,tPt1,...,T u

∣∣∣α̂ĝit � α0
g0i t

∣∣∣ � opp1q, and

3. }m̂�m}8,Z � Op

�
ξKK

�µ
��Op

�
ξ2
K

?
K?
NT



.

as N, T,K Ñ 8.

7For reference, Andrews (1983) provides conditions to when a stationary autoregressive process is alpha
mixing.
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Theorem 4 provides the asymptotic normality for θ̂’s inference and α’s estimates as
uniformly consistent. Strengthening Corollary 1, Theorem 4 provides consistency of α̂ for
everyone at every period. For the nonparametric estimate, the terms Op

�
ξKK

�µ
�

and

Op

�
ξ2
K

?
K?
NT



control the approximation and estimation errors, respectively. When mo-

ments are heterogeneous even within groups, the convergence rate has an extra term and the
covariance matrix involves the group averaged E rxit | αs instead. The details are provided
in the Appendix A.

The proof strategy of Theorem 4 relies on the asymptotic equivalence result implied by
Theorem 3. Furthermore, Theorem 3’s asymptotic equivalence implies that the classification
problem leads to no efficiency loss in the limit. For θ’s estimator, Robinson (1988) considers
the semiparametric efficiency bound as the variance of θ’s non-linear least squared (NLLS)
estimator θ when m is a known parametric function identified by a finite-dimensional param-
eter γm. Then Robinson (1988) shows the double-residual semiparametric regression obtains

this efficiency bound when E rxit|zits � Bm pzit; γmq
Bγm , almost surely.

The same exercise can be done here under no serial correlation, conditional homoskedas-
ticity, xit as strictly exogenous. In the presence of serial correlation or conditional het-
eroskedasticity, the NLLS’s inefficiency is well-known. Moreover, including lags of xit can
also improve the NLLS estimator’s efficiency when xit is just sequentially exogenous. How-
ever, under those three conditions, the NLLS estimator is sensible a benchmark because it
achieves the Gauss-Markov condition for its linear coefficient estimator.

Differencing the model by its group-level means turns the model into a simple partially
linear model. By the Frisch-Waugh-Lovell theorem, the linear coefficient estimator obtained
from applying NLLS on the demeaned model is identical to the version of NLLS applied to
the original model. Then adapting Robinson (1988)’s observation and assuming m and its
expectation are diferentiable in γm, the asymptotic semiparametric efficiency bound is

σ2
ε pX1 � X2 rX3s�1 X1

2q�1, (15)

where σ2
ε � E

�
ε2it
�
,X1 � E

�
lim
NÑ8

°N
i�1 qxi1qx1i1
N

�
, X2 � lim

NÑ8

°N
i�1 E

�qxi1 B
Bγm

qm pzi1; γmq1
�

N
, X3 �

lim
NÑ8

°N
i�1 E

�
B

Bγm
qm pzi1; γmq B

Bγm
qm pzi1; γmq1

�
N

, qxit � xit�E rxit|αs, and qm pzit; γmq � m pzit; γmq�
E rm pzit; γmq |αs. Moreover,

Σθ � σ2
ε

�
lim
NÑ8

°N
i�1 E

�pxi1 � ψxxε pzi1, αqq pxi1 � ψxxε pzi1, αqq1
�

N

��1

(16)

under those three conditions. Now it is apparent that Σθ obtains the semiparametric bound

when E rxit|zits � Bm pzit; γmq
Bγm , as in Robinson (1988). The efficiency bound argument easily

extends to the case of heterogeneous moments within-group, as described in the extended
Assumption 9.
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Now I propose an estimator for Σθ under all the previous assumptions. I construct the

sample analogs yψxzg �
°
i:ĝi�g

°T
t�1 x̃itx̃

1
it

N̂gT
and xψxε � °N

i

�°T
t�1

°T
s�1 x̃itx̃

1
isε̂itε̂is

�
NT

- where

ε̂it denotes the partially linear model’s residuals. Recall, pK pzitq denotes the basis. x̃it,d

is the residual from the least-squared projection of xit,d �
°
i:ĝj�ĝi

xjt,d

N̂ĝi

onto pK pzitq �°
j:ĝj�ĝi

pK pzjtq
N̂ĝi

, with N̂g �
Ņ

i�1

tĝi � gu.

Corollary 2. (Covariance Estimator)

Under Assumption 1-6, and 8-9, Σ̂θ �
�

G0¸
g�1

N̂g

N
ψ̂xzg

��1

ψ̂xε

�
G0¸
g�1

N̂g

N
ψ̂xzg

��1

is a consistent

estimator of Σθ.

The covariance formula is the version of Arellano (1987)’s within-group estimator after
accounting for the non-parametric estimation of m̂. In their appendix, Bonhomme and
Manresa (2015) also considers the within-group estimator for the linear model. Within the
large N and T framework, Hansen (2007) shows the within-group estimator as consistent for
the linear model. I extend this consistency result into the partially linear case. In section
4, I assess the covariance estimator’s performance in constructing confidence intervals for a
dynamic panel model with heteroskedasticity.

3 Two-Step Estimator

Here, I study a method of moments problem, conditioning on the partially linear model’s
estimated parameters. The goal is to set up a two-step estimator for the firm’s production
function. The first subsection expands on section two’s discussion about the production
function estimation and sets up a moment criterion example. The next section discusses the
identification in more detail and provides a brief literature review of production function es-
timation near the end. Finally, I present a generic method of moments problem, conditioning
on the partially linear model’s estimated parameters. This general setup covers the produc-
tion function estimation’s criteria built from differing choices of moments. The asymptotic
theory subsection shows that the general setup’s two-step estimator is consistent.

3.1 Production Function

The objective is to estimate a parametric production function under the simultaneity problem
- the firm bases its input choices on productivity, which is unobserved by the econometri-
cian. Neglecting the simultaneity problem induces biases in the estimates - usually known as
the “transmission bias”. First, I generalise section two’s example to allow smooth Hicksian
production technology and ωit as a first-order Markov process. The next subsection’s con-
ditional method of moments problem analyses this application under a general combination
of moments.

19



At the high-level, my setup generalises the proxy variable approach on estimating the
firm’s production function. The generalisation introduces four additional features. The proxy
variable approach assumes that different firms’ productivity processes are first-order Markov
and independent of each other. Furthermore, the Markov transition function is identical. I
generalise by introducing cross-correlation in firms’ productivity (1) and relaxing the first-
order Markov assumption (2). It is plausible to assume the cross-correlation is relevant
in application because spillover effects happen from technological advancements. Finally,
I weaken the scalar unobservable assumption (3) and allow firms’ productivity transition
dynamics to differ (4).

After setting up the estimation procedure, I discuss my identifying assumptions. For
readers only interested in the econometric setup, it is sufficient to read just the Setup and
Estimation and the Conditional Method of Moments parts in this subsection.

Setup and Estimation

The Hicksian Neutral technology specification defines productivity to have the same effect
on the marginal product of capital and labour. So the firm’s production function is expressed
as

Yit � exp
�
εit � α0

g0i t
� ωit

	
F pKit, Litq , (17)

where Yit, Kit, and Lit are output, capital, and labour, respectively. The production function
can be log-linearised to form:

yit � f pkit, lit; τ̃q � α0
g0i t

� ωit � εit, (18)

where yit � log pYitq , kit � log pKitq, and lit � log pLitq. The econometric objective is to
estimate the parameter τ̃ when the parametric form of f is known. For Cobb-Douglas case,
f pkit, litq � βkkit � βllit with τ̃ � pβk, βlq and, for Constant Elasticity of Substitution case,
f pkit, litq � β1 log pexp pkitβ2q � exp plitβ2qq with τ̃ � pβ1, β2q.

As before, I assume there is a variable υit to proxy ωit after accounting for the firm’s input
choice of pkit, litq. That is ωit � h pkit, lit, υitq, for some unknown function h. A popular choice
of υit is the firm’s intermediate material input in the recent applied literature. In the next
part, I briefly discuss when the h function is independent of α0. Furthermore, I provide an
example of the h function that is independent of α0 in the Structural Examples part.

The h function provides the reduced form regression,

yit � m pkit, lit, υitq � α0
g0i t

� εit, (19)

where the nonparametric function m pkit, lit, υitq � f pkit, lit; τ̃q�h pkit, lit, υitq. In the absence
of α0, the reduced form regression is a standard first-step regression in the extensively used
proxy variable’s method to estimate the production function. As usual in the literature, h is
treated as nonparametric and thus f is not separably identifiable from h. Then the reduced
form regression is a semiparametric regression and can be estimated by the partially linear
model’s method in section 2. This estimation forms the first-step and separates ωit from
α0
g0i t

� εit. Hence, this estimation step can also be referred as the filtering step.
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Let vit � ωit � E rωit | ωit�1s. For now, I assume the following moment conditions are
valid:

E

����kit�1

lit�1

1

�
vit
�� � 0 and E rωits � 0. (20)

The first set of moments assumes the firm to forecast ωit with just the information of ωit�1

when the firm chooses capital and labour inputs at the period t� 1. For now, I assume τ̃ ’s
dimension is less than four for these moment conditions to sufficiently identify it. In the
next part, assumptions are presented and more valid moments appear to identify τ̃ when it
has higher dimensions.

Next, I discuss how to construct sample moment analogues to estimate τ̃ . Based on m’s
identity, ωit � m pkit, lit, υitq � f

�
kit, lit; τ̃

0
�

8. Upon having the estimate m̂, guessing τ̃ 0 � τ̃
leads to a guess of

η̂it pτq � m̂ pkit, lit, υitq � f pkit, lit; τ̃q � ν, (21)

where τ � pτ̃ , νq. The constant ν appears from m’s intercept as not separately identified
from α0

g0i t
in the filtering stage.

To recover vit, I estimate E rωit | ωit�1s by minimizing the least-squared prediction error
of ω̂it pτq based off the series of basis functions bL pω̂it�1 pτqq. With the estimated firm’s
Markov prediction as R̂ pω̂it�1 pτqq � ω̂it�1 pτq1 r̂L pτq then

v̂it pτq :� ω̂it pτq � R̂ pω̂it�1 pτqq . (22)

For sections 4 and 5, I use the Cobb-Douglas production function and, hence, τ̃ has
dimension two. At there, the second-step’s General Method of Moment (GMM) criterion is

M̂NT pτq

� 1

N

Ņ

i�1

���°T
t�2 lit�1υ̂it pτq

T

�2

�
�°T

t�2 kit�1υ̂it pτq
T

�2

�
�°T

t�1 ω̂it pτq
T

�2

�
�°T

t�2 v̂it pτq
T

�2
�� .

Thus the estimator
τ̂ P arg min

τ
M̂NT pτq .

For identification purposes, the criterion does not pool the moments over the cross-
section. When cross-sectional units have non-identical distributions, pooling the cross-
sectional moments can cause the criterion to have non-unique minima.

The assumptions and the relationship with the proxy variable method

Here, I present my assumptions about the firm’s behaviour on the proxy variable. Then
I compare them to the standard assumptions in the literature, as presented by Ackerberg,
Caves, and Frazer (2015).

Assumptions:

8τ̃0 stands for the true value of τ̃ .
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1. (Exclusion): υit is neither capital nor labor.

2. (Scalar Unobservable): υit � gt pkit, lit, ωitq.
3. (Strict Monotonicity): gt is strictly increasing in ωit.

4. (Time invariance): gt pkit, lit, ωitq � g pkit, lit, ωitq.
5. (First-Order Markov): Let Iit be the firm’s information set capturing all the firm’s

knowledge at the end of period t. E rωit | Iit�1s � E rωit | ωit�1s. Furthermore, ωit is a
zero-mean process.

6. (”Surprise” shock): E rεit | Iits � 0.

It is instructive to first see how these assumptions sets up the estimation. The combination
of assumptions 2, 3, and 4 imply g as invertible with respect to ωit, conditional on kit and
lit. Then the unknown h is g�1 pkit, lit, υitq.

Assumption 5 verifies the provided moment conditions because kit�1 and lit�1 are in
the firm’s information set Iit�1. Furthermore, Assumption 5 provides additional moment
conditions,

E

����kit�slit�s
1

�
vit
�� � 0 and E

����kit�slit�s
1

�
pvit � εitq
�� � 0, for s ¥ 1, (23)

because the further lags are also in Iit�1. The second set of moments can be constructed by
using the sample analogue,

{vit � εit pτq � yit � m̂ pkit, lit, υitq � f pkit, lit; τ̃q � ν̂ � R̂ pω̂it�1 pτqq � α̂ĝit. (24)

These additional moments would help to identify τ̃ when its dimensional is greater than four.
The section’s last part sets up the notation for the general method of moments problem.

In absence of α0 (i.e. α0
g0i t

� 0), the first, second, third, and fifth assumptions are

standard in the proxy variable literature. In the sixth assumption, I interpret εit as the
unpredictable productivity shock, as first suggested by Olley and Pakes (1996). The fourth
assumption assumes α0

g0i t
to completely capture changes in the macroeconomic environment.

This consequence is more restrictive than the general proxy variable framework - I call this
the time-invariant proxy variable. Section 79 discusses on how to handle gt with finitely
many structural changes over time. However, the time-invariant setup is the often adopted
specification in practice.10 The pertinent observation is my setup nests the time-invariant
proxy variable model.

Logged capital investment (Olley and Pakes (1996)) and logged intermediate material
(Levinsohn and Petrin (2003)) are two popular choices of υit in the production function
literature. When υit is intermediate material, the function h is the firm’s conditional demand

9This is located after the conclusion section.
10Allowing time-varying gt requires in splitting the observations to estimate multiple nonparametric func-

tions.
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of intermediate material. When υit is the capital investment, the function h is the firm’s
investment demand.

Assumption 2 says firm’s demand function of υit is constant over α0
g0i t

, after conditioning

on pkit, lit, ωitq. As an example, this Assumption 2 holds for intermediate material when
the firm’s capital and labor input choices define its production capacity. Then the firm uses
intermediate material to fill up its production capacity. ωit can be understood as productivity
that scales up the firm’s capacity while α0

g0i t
does not.

Say, for instance, the firm produces twenty defected units of goods for every two hundred
in production. However, the firm can only sell its non-defected units. With better training
and quality control, the firm can reduce its defect rate down to five percent; then, this
change is a productivity increase. However, the amount of intermediate material used to
produce each unit remains unchanged, and then α0

g0i t
captures this productivity increase.

More discussions about h as constant over α0 are provided in the Structural Examples part.
Under the presence of α0

g0i t
, the fifth assumption is a bit nuanced. There is an implicit

assumption of ωit as mean independent of α0 conditional on ωit�1. Relaxing this assumption
is straightforward, but it is kept for simplicity. All forms of cross-correlation is to be absorbed
by α0

g0i t
and this leaves ωit as independent over i.

The standard proxy variable model precludes dynamic cross-correlation in firms’ produc-
tivity because of the fifth assumption, and α0

g0i t
� 0. It is to imagine the firm observing

(at least partially) its competitors’ productivity. So other firms’ productivity information
should be in the set Iit. The fifth assumption says their information is not helpful to pre-
dict tomorrow’s ωit�1 beyond knowing today’s ωit. For application, this means the firm’s
competitors can not independently innovate with positive spillover effects for the industry.

In the absence of α0
g0i t

, the Scalar Unobservable assumption with strict monotonicity

predicts the firm to always increase its input level of υit by a higher overall productivity
level. This prediction is a reasonable assumption in the competitive market but can fail
when the firm has market power. For example, if technological progress helps the firm to
reduce its waste of intermediate material, then the firm with market power may want to
cut its intermediate material purchases to raise profits. Then the strict monotonicity fails.
With α0

g0i t
, the firm does not need to increases its purchases in a strict fashion with overall

productivity.
Finally, α0

g0i t
does not need to be a first-order Markov process. By including α0

g0i t
, the

econometrician can be somewhat agnostic about the productivity process’ order of persis-
tence. Furthermore, the firms’ productivity transition functions can now be different because
α0
g0i t

differs among firms. So my setup generalises the first order Markov setup used in the

proxy variable approach.

Structural Examples

Here, I provide some worked out examples of g as not dependent of α0
g0i t

.

Intermediate Material - υit as logged intermediate material
The first example is in the setup of the structural value-added model, which is the frequently
used example to justify the proxy variable assumptions - see Ackerberg, Caves, and Frazer
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(2015) and Gandhi, Navarro, and Rivers (2017b). In that setup, F is the firm’s “valued-
added” production function but the firm has a gross production function described by the
Leontief specification,

Yit � exp
�
α0
g0i t

� εit

	
mintC pMitq , exp pωitqF pKit, Litqu, (25)

where Mit is the intermediate material and C is strictly increasing. But α0
g0i t

is the same

constant for every firm in the usual structural value-added model. The structural value-
added model assumes the data-generating process is driven by the firm’s interior solution of
the Leontief model.

Under the usual structural value-added model, the firm’s marginal product of interme-
diate material is predictably constant over time. My extension generalises the structural
value-added model by allowing the firm to predict changes in the marginal product of in-
termediate material over time. Next, it becomes apparent that the structural value-added
model illustrates the previously described capacity narrative.

The firm’s interior solution has Mit � C�1 pexp pωitqF pKit, Litqq because of C’s strict
monotonicity. Here, the g function is log

�
C�1 pexp pωitqF pKit, Litqq

�
as not dependent of

α0
g0i t

. Furthermore, the interior solution also implies Yit � exp
�
εit � α0

g0i t
� ωit

	
F pKit, Litq.11

So the structural value-added model assumes the data generating process is based on firms
applying the interior solution. When C is convex then it overcomes many concerns raised by
Gandhi, Navarro, and Rivers (2017b) about the firm achieving the interior solution.

Investment - υit as logged investment
Economic models frequently assume that capital is subjected to some adjustment cost or
delay with the installation. Hence, the firm’s investment decision h is not sensitive to short-
term productivity changes. Then α0

g0i t
can stand as short-term productivity fluctuations.

Furthermore, ωit can stand for more persistent productivity changes.
In this environment, the firm’s capital input is not correlated with α0

g0i t
. However, when

the firm’s labour input faces no dynamic constraints; labour is correlated with α0
g0i t

. For

concreteness, I consider an example of Cobb-Douglas technology and a price-taking firm
with its period t’s capital investment as only effective at the start of period t � 1. With
the predetermined capital Kt, the firm chooses labour Lit to maximize its profit Πt pKitq �

11Under the interior solution, the semiparametric regression is

yit � log pC pMitqq � α0
g0
i t
� εit.

Which makes it just a semiparametric model of just intermediate material Mit. However, by generalising
the gross production function to

Yit � exp
�
α0
g0
i t
� εit

	
mintC pMit,Kit, Litq , exp pωitqF pKit, Litqu,

can provide the semiparametric regression as

yit � log pC pMit,Kit, Litqq � α0
g0
i t
� εit,

under the interior solution. Then the regression is a function of pMit,Kit, Litq.
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pE rexp pεitqs exp
�
αg0i t � ωit

	�
Kβk
it L

βk
it

	
� rKit � wLit, where p and pw, rq are output price

and factor prices, respectively.

The standard optimization yields logged labour as lit � cLit �
α0
g0i t

1 � βl
� βk

1 � βl
kit, where

cLit � 1

1 � βl
log

�
pβl
w

E rexp pεitqs exp pωitq



. Hence, conditional on kit and ωit, lit is still

mean-dependent of α0
g0i t

. After the labour choice, the firm invests in capital, exp pυitq, to

maximize its discounted δ1 future profit,
8̧

T�t

δE rΠt�1 pKit�1q |Its subjected to the capital

accumulation dynamic, Kis�1 � p1 � δ2qKis�exp pυisq, where s ¥ t and δ2 is the depreciation
rate. Suppose α0

g0i t
is independently and identically distributed over time within the group.

Then the future profit is constant over α0
g0i t

and, in turn, the υit is constant of α0
g0i t

. Thus the

investment function g does not depend on α0
g0i t

. Finally, Olley and Pakes (1996) discusses

how υit can be monotonic with respect to ωit in the setup here.

Comparison Against the Alternatives

The fixed effects model is the first proposed solution to address this simultaneity problem.
However, it requires the observed productivity to be time-invariant. Here, none of the firm’s
productivity components has to be time-invariant. Furthermore, the fixed effects estimator
is known to produce unreasonably low capital coefficient estimates, as reviewed by Griliches
and Mairesse (1998). The suspect is the fixed effects’ within-transformation exacerbates
attenuation bias from classical measurement error in the capital.

Griliches and Hausman (1986) shows attenuation bias increases as information is swept
out of the regressors. The fixed effects estimator induces within-transformation, and the
information loss is most severe when the regressors are highly serially correlated. As noted by
Levinsohn and Petrin (2003), many firms make lumpy capital-investment decisions, and, as a
consequence, capital is likely to be highly serially correlated. Fortunately, the grouped fixed
effect estimator avoids within-transformation but applies between-transformation. Hence,
the grouped fixed effects estimator is more resilient against attenuation bias, compared
to fixed effects, when the between-firm variation is significantly larger than the within-
firm variation. Section 5 re-visits this point and shows the between-firm variation is more
pronounced in the Chilean data.

As an alternative to the proxy variable setup, the dynamic panel approach avoids the
inversion setup, but it assumes the firm treats ωit as an autoregressive process. Furthermore,
it estimates the autoregressive process with moment conditions. In summary, the dynamic
panel method avoids the proxy variable assumptions for a simple autoregressive ωit and
using more moment conditions. More recently, Cheng, Schorfheide, and Shao (2019) shows
how to estimate the dynamic panel approach with heterogeneous productivity means at the
group level. In contrast to the fixed effects model, the group specification does not suffer
the incidental parameter bias problem.

The other traditional avenues are to use either the firm’s first-order condition behaviour or
input prices as instruments. Imposing the firm’s first-order condition either requires assuming
perfect competition or the knowledge of each firm’s output demand curve. Assuming perfect
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competition is not appropriate in applications where firms have market power, as in De
Loecker, Eeckhout, and Unger (2018), De Loecker and Scott (2017), and De Loecker and
Warzynski (2012). Recovering the firm’s output demand curve requires additional consumer
preference assumptions and the demand side’s data set. For the input prices instrument
approach, the firm’s specific input prices must be available and provide valid exogenous
variation. As both Ackerberg, Caves, and Frazer (2015) and Gandhi, Navarro, and Rivers
(2017a) notes, having valid and reliable instrumental input prices is not typical in the data.
In summary, these alternatives place a much higher demand for what is available in the data.

The proxy variable’s niche is the combination of allowing a general Markov process, being
a minimalist in both data requirement and making assumptions on the market structure, and
utilising cross-sectional variation to control for ωit. My extension introduces firms’ correlated
productivity while keeping many of the proxy variable’s advantages.

Conditional Method of Moments

To cover the general production function problem, I set up a conditional method of moments
problem. The interest is to estimate the parameter τ (P T ) and its observable variables are
generically denoted as wit (PW � Rd5) - potentially to include yit, xit or zit and their lagged
values.

Define ω pzit, τq :� m pzitq � f pzit, τ̃q � ν. Then the firm’s Markov prediction can be
expressed as,

R pω pzit, τq , τq � E rω pzit�1, τq | ω pzit, τqs . (26)

Since zit is stationary from the partially linear theory’s assumption, the function R is not a
function of t. R is the first order autoregression of ω pzit, τq and the estimation procedure
applies basis approximation to estimate R. Without loss of genearality, the R function can
be treated as a function of pwit, τq. Then, τ 0 solves the set of moment conditions,

E
�
m
�
wit, θ

0,m pzitq , α0
g0i t
, τ, R pwit, τq

	�
� 0. (27)

This setup covers moments built from higher ordered lagged inputs. The criterion function
is denoted as,

M̂NT pτq

� 1

N

Ņ

i�1

�
1

T

Ţ

t�1

m
�
wit, θ̂, m̂ pzitq , α̂ĝit, τ, R̂ pwit, τq

	�1

W

�
1

T

Ţ

t�1

m
�
wit, θ̂, m̂ pzitq , α̂ĝit, τ, R̂ pwit, τq

	�
,

for some non-stochastic12 positive definite weight matrix W . Then the second-step estimator

τ̂ P arg min
τPT

M̂NT pτq . (28)

In the next subsection, I provide sufficient conditions for τ̂ to be consistent. The strategy is
to verify Chen, Linton, and Keilegom (2003)’s high-level assumptions for their Theorem 1 in my
setup, where there are both time and cross-sectional dependence. Furthermore, I need to show R̂
as uniformly consistent over wit and τ . The problem is non-trivial because R̂ is estimated by series
where both its outcome and regressor depend on the parameter τ .

12Extending W to be stochastic is straightforward when W is asymptotically convergent in probability to
a positive definite matrix. For simplicity, I omit this extension.
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3.2 Asymptotic Theory

Sufficient conditions for τ̂

Here, I provide the sufficient conditions for consistency of the second-step estimator. The objec-
tive is to estimate τ in presence of the nuisance parameter h pwit, zit, τq � pθ,m pzitq , αNT pgq , R pwit, τqq,
where αNT pgq �

!
tαgituTt�1

)N
i�1

. In this notation,

α0
NT

�
g0
� � "!

α0
g0i t

)T
t�1

*N
i�1

, α̂NT pĝq �
!
tα̂ĝituTt�1

)N
i�1

,

ĥ �
�
θ̂, m̂ pzitq , α̂NT pĝq , R̂ pwit, τq

	
, and h0 pwit, zit, τq �

�
θ0,m0 pzitq , α0

NT

�
g0
�
, R0 pwit, τq

�
.

Besides R, the nuisance parameters are inherited and estimated from the first step partially linear
model. Here, I assume estimator of R as uniformly consistent but the next part provides the
sufficient conditions for it to happen. Appendix-B contains the proof.

Assumption S 1. (Identification)

1. For any δ ¡ 0, there exists an ε pδq ¡ 0 such that

inf
}τ�τ0}¡δ

E
�
m
�
wit, τ, h

0 pwit, zit, τq
��1 E �

m
�
wit, τ, h

0 pwit, zit, τq
�� ¡ ε pδq ,

for any i and t.

In the model’s setup, the true parameter τ0 solves the conditional moments. Assumption S 1
ensures τ0 does not suffer the weak identification issue with using the conditional moments.

Assumption S 2. (Compactness)

1. T is compact and has a non-empty interior containing τ0.

2. The supports W and Z are compact.

Assumption S 2.1 precludes the analysis in dealing with the boundary value problem. As in
Chen, Linton, and Keilegom (2003), I require the sample analogs of the conditional moments to
converge to its population criterion uniformly. The Assumption S 2.2 compactness assumption
helps to ensure this convergence can happen in the N as comparably larger than the T paradigm.
For the application, the compactness does not introduce new constraints. There is no additional
random variable w, and the basis function is a polynomial. Generally speaking, polynomials can
only achieve uniform approximation over compact sets.

Furthermore, the compact supports also help to turn the criterion into Lipschitz. The Lipschitz
condition is a convenient assumption to achieve uniform convergence, as mentioned by Chen, Linton,
and Keilegom (2003).

Assumption S 3. (Moments and Dependency)

1.
!�
wit, zit, α

0
g0i t

	)8
t�1

has an alpha mixing coefficient ρw,z,αi ptq satisfying sup
1¤i¤T

ρw,z,αi ptq  
Cw,z,α exp p�p1tq, for some constant Cw,z,α and p1 ¡ 0.
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2. For each i,
�
wit, zit, α

0
g0i t

	
is a stationary process over t.

Assumption S 3.1 is a weak dependency for the joint distribution of
�
wit, zit, α

0
g0i t

	
. The partially

linear model does not necessarily have wit. Hence, the previous weak dependency conditions alone
do not necessarily imply Assumption S 3.1. zit as a stationary process is already covered by
Assumption 9, but is re-stated in Assumption S 3.2 for the ease of reference in the proof.

For the production function setup, these weak dependency conditions hold if intermediate ma-
terial (or investment), labour, and capital are functions of independent state variables satisfying
these weak dependency conditions. The simplest example is when the firm has no dynamic con-
straints on input choices and faces prices that are mutually independent processes and weakly time
dependent.

However, it is natural to assume that capital faces dynamic constraints, then capital is also a
state variable but it has a natural autoregressive transition. Then capital can be weakly dependent
if the firm’s investment function is sufficiently weakly time dependent. Furthermore, all state
variables are no longer mutually independent because of capital as an additional state variable. So
checking the weak time dependency for labour and intermediate material become more involved
than before. It is useful to come up with simple sufficiency conditions for future research.

The estimation problem feeds the conditional moments with the first-step estimators, rather
than the actual parameters. The estimation error is measured by the following metric,

d
�
h, h1

� � ��θ � θ1
��� sup

zPZ

∣∣m pzq �m1 pzq∣∣� sup
1¤i¤N ;1¤t¤T

∣∣∣α1g1it � αgit

∣∣∣� sup
τPT

sup
wPW

��R pw, τq �R1 pw, τq�� .
Assumption S 4. (Regularity)

1. R0 is continuously differentiable.

2. m0 is continuous.

3. m is continuously differentiable over R3�d2�d3�d4.

These regularity conditions and the previous compact support assumptions complete m as
Lipschitz. For the production function case, differentiability is easy to verify for m0 and m. For
example, m0 is differentiable when the parametric production function is differentiable, and the
firm’s conditional demand of the proxy variable has a nowhere vanishing derivative.

Assumption S 5. (Rate)

1.
log pNq
T

Ñ 0, as N,T Ñ8.

2. d
�
ĥ, h0

	
� op p1q.

Assumption S 2.2 is immediate from the results in Theorem 4 and the presumption of having
a consistent estimator for R0. Assumption S 2.1 is compatible with the larger N than T setup as
the log function is slowly varying.

Theorem S 1. Under Assumption 2, S 1, S 2, S 3, S 4, and S 5,

τ̂
PÑ τ0,

as N,T Ñ8.
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The case of a stochastic matrix W is not formally covered here. However, Theorem S 1’s
argument can be adapted to hold when the stochastic W satisfies the high-level conditions specified
in Chen, Linton, and Keilegom (2003)’s Corollary 1.

The paper currently does not provide the theory to make inference on τ̂ . Verifying the sufficient
conditions leading up to Chen, Linton, and Keilegom (2003)’s Theorem 2 would provide a central

limit theorem result. One important condition is to have ĥ to converge at the pNT q 14 rate. The
partially linear theory shows that this can happen for m̂ and θ̂. Furthermore, the next subsection
provides sufficient conditions for R̂ to do so. However, α̂ĝit’s rate is unknown and to proceed forward
may require dropping moment conditions using α̂ĝit. Furthermore, Chen, Linton, and Keilegom
(2003) also requires a Donsker condition on the criterion function, and they only provide a reference
to verify this condition for cross-sectional data with independence. However, section 4 shows that
the bootstrap confidence interval provides the correct coverage in simulation when T is large. It
appears the normality approximation and bootstrap standard errors can be used for inference, even
under the cross-sectional dependence from α0 and the time-series dependence for each unit.

Sufficient conditions for R̂

Here, I provide sufficient conditions to verify the uniform consistency of R̂ - assumed by the Condi-
tional Method of Moments. As mentioned previously, I consider R̂ as a non-parametric estimator
using basis tbLu8L�1.

The proof uses a similar argument presented in Ai and Chen (2003) Lemma 1’s proof. However,
their setup is largeN asymptotics, and only their dependent is a function of the unknown parameter.
Some of the presented assumptions here overlaps the ones in the section 2. However, there is no
issue of conflict and repeating them helps for reference purposes. Appendix-C contains the proof.

Assumption R 1. (Dependency) Let Cf be some positive constant.

1. Conditional on α, tzitu8t�1 is independent over i. Furthermore, it is unconditionally stationary
over t.

2. Conditional on α and for each i, the process zit has an alpha mixing coefficient ρzi pα, tq.
Furthermore, sup

iPt1,...,Nu

8̧

t�0

pρzi pα, tqq
1
3   Cf .

Assumption R 1 is already covered by Assumption 9 in the partially linear model.
Define ω pzit, τq :� m pzitq � f pzit, τ̃q � ν. By Assumption R 1.1, ω pzit, τq is independent over

i, conditional on α. Note that R p�, τq is the regression of ω pzit, τq against its first lag, i.e.

R pω pzit, τq , τq � E rω pzit�1, τq | ω pzit, τqs .

The R function’s second argument, τ , captures the fact of ω pzit, τq’s distribution varying with

τ . The residual vτit :� ω pzit, τq � R pzit, τq is mean zero by construction. Though vτ
0

it is serially
uncorrelated in production theory, misspecified τ (� τ0) induces serial correlation of vτit.

R function can be re-parameterized as a function of just pzit, τq. This version best fits the R’s
description in the GMM step with wit � zit. However, for asymptotic analysis, it is more natural
to treat R as function of pw, τq due to using the generated regressor m̂.

Assumption R 2. (Compactness) Z and T are compact.

This assumption is already covered by Assumption S 2.
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Assumption R 3. (Smoothness)

1. R is continuously differentiable in pω, τq.
2. f is continuously differentiable.

3. m is continuously differentiable.

Assumption R 3’s only addition over Assumption S 4 is the production function is also continu-
ously differentiable. Assumption R 3 turns ω pzit, τq as continuously differentiable. In conjunction
with Assumption R 2, ω pZ � T q is compact in R. Thus ω pZ � T q is contained in the interior of a
larger compact set W, with B pω pz, τq , δW q � W for a constant δW and any pz, τq P Z � T . This
uniform radius helps to bound the generated regressor’s error in the proof.

Assumption R 4. (Approximation)

1. There exists a sequence of functions tr0,Lu8L�1 and µR ¡ 0 such that

sup
ωPW

sup
τPT

∣∣bL pωq1 r0,L pτq �R pω, τq∣∣ � O
�
L�µR

�
.

2. bL is continuously differentiable on W.

Assumption R 4.1 can be readily verified for power series. R’s smoothness assumption al-
lows the pw, τq power series to uniformly approximate R over W � T . Then r0,L pτq can be
constructed by combining the approximating coefficients with the factors involving orders of τ .

Assumption R 4.2 implies bL and
dbL

dω
are bounded on W. So there exists a sequence of monotonic

bounds,
!
ξbL

)8
L�1

, satisfying sup
lPt1,...,Lu

max

"
sup
ωPW

∣∣bLl pωq∣∣, sup
ωPW

∣∣∣∣dbLldω pωq
∣∣∣∣*   ξbL. Then they imply

max

"
sup
ωPW

��bL pωq�� , sup
ωPW

∣∣∣∣dbLldω pωq
∣∣∣∣*  

?
LξbL. Assumption R 4 also provides the smoothness condi-

tions for the R’s version as function of pzit, τq.
To ensure the rank condition, the standard setup places eigenvalue restrictions on the matrix

E
�
bL pω pzit, τqq bL pω pzit, τqq1

�
. Due to cross-sectional dependence, here analogous assumption is

to place the similar restrictions on the same expectation but conditioning on α. But, conditioning
α, ω pzit, τq is not stationary but time-dependent.

Assumption R 5. (Rank Condition) There exist a constant C and a sequence of positive definite

matrix of functions
!
ψbb,L pα, τ, T q

)8
L�1

such that

1.

�����ψbb,L pα, τ, T q �
°N
i�1

°T
t�1 E

�
bL pω pzit, τqq bL pω pzit, τqq1

∣∣α�
NT

�����   C?
N

.

2.

°L
l�1 E

�
1

λlLpα,τ,T q

�
pNT qrψ

  C for some rψ P r0, 1

4
q, where λ1L pα, τ, T q , ..., λLL pα, τ, T q are the

matrix ψbb,L pα, τ, T q’s eigenvalues.
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Assumption R 5 places the eigenvalue restrictions on the matrix ψbb,L pα, τ, T q, which has to be
time-varying and dependent on α. The matrix ψbbL pα, τ, T q is just

G0¸
g�1

κg

°T
t�1 E

�
bL pω pzit, τqq bL pω pzit, τqq1

∣∣α, g0
i � g

�
T

,

when the moments are identical within the group.

Assumption R 5.2 uniformly (over τ) controls the relative size of
�
ψbb,L pα, τ, T q

��1
’s norm to

the sample size. The issue is to ensure the convergence rate as not dependent on τ . This restriction
ensures sufficient data signal is available for all τ P T . Typically, ψbb,L’s larger eigenvalues increase
with L and is a measure of the signal. When there is sufficient signal (i.e., the sum of the expected
inverse eigenvalues is uniformly bounded); Assumption R 5.2 is satisfied with rψ � 0. When group
members have identical moments, λlL does not change with N . Then Assumption R 5.2 is satisfied;
when L increases cautiously relative to the size of N .

Assumption R 6. (Rates) Let E
�
sup
zPZ

|pm pzq �m pzq|
�
� ∆, dNTL � log

�
L
�
ξbL

	2
pNT qrψ



, and

vNTL � d3 log

�
L
�
ξbL

	2
pNT q 14�rψ



. As N,T, LÑ8,

1.
T

N
Ñ 0.

2.
N

1
4
�rψL

�
ξbL
�2

LµR
Ñ 0.

3. max

#
vNTL

�
ξbL
�4
L

pNT q 12�2rψ
,
dNTL

�
ξbL
�4

N1�rψ
,
vNTL

�
ξbL
�2 ?

L

pNq 12�2rψ

+
Ñ 0.

4. pNT q 14 ξbL∆ Ñ 0.

5. L
�
ξbL

	2
∆ Ñ 0.

Assumption R 6 provides the conditions for the series estimator to uniform converge at the

pNT q 14 rate. For just uniform consistency, the proofs can be adapted by using weaker versions of

Assumption R 6.2, R 6.4, and R 6.5 by scaling the rates with
1

pNT q 14
. Furthermore, Assumption

R 6.3 can weakened to
vNTL

�
ξbL
�4
L

pNT q1�2rψ
Ñ 0,

vNTL
�
ξbL
�2 pT q 14�rψ ?L
pNq1�rψ

Ñ 0, and
dNTL

�
ξbL
�4

N1�rψ
Ñ 0.

Assumption R 6.1’s large N over T setup ensures Assumption R 5.1’s cross-sectional hetero-
geneity bound is asymptotically negligible. Assumption R 6.3 and R 6.4 ensure the series es-

timator uniformly converges at pNT q 14 rate in absence of m̂’s estimation error. Assumption R
6.4, R 6.5, and R 6.6 requires the rate of m̂’s estimation error to dissipate. With Theorem 4,

∆ � Op

�
ξKK

�µ � ξK
?
KΠKN

�1
	
�Op

�
ξ2
K

?
K?
NT

�
. The term Op

�
ξK
?
KΠKN

�1
	

comes from

the cross-sectional heterogeneity in moments.

Theorem R 1. Under Assumption R 1, R 2, R 3, R 4, R 5, and R 6,

sup
τPT

sup
ωPW

pNT q 14
∣∣∣R̂ pω, τq �R pω, τq

∣∣∣ � op p1q .
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4 Monte Carlo

The Monte Carlo section covers two sets of simulation exercises. The first set simulates the coverage
probability of θ̂’s confidence interval in a partially linear dynamic panel setting. The confidence
intervals use the covariance formula and the asymptotic normality result presented in the asymptotic
theory section. Then the second set studies the two-step estimator in the production function
setting. For the first step, the simulation benchmarks the information criterion’s performance and
provides comparative statics in studying classification error. For applied interest, I also simulate
the bootstrap confidence interval’s coverage for the two-step estimator.

Generally, the classification error vanishes, and the coverage probabilities is close to the nomi-
nal values as the number of periods increases. Similarly, the information criterion overwhelmingly
selects the correct model. Each simulated trial computes the estimator by using four hundred differ-
ent group initialisations. The unknown function is approximated by a cross-validated polynomial,
unless specified otherwise. Appendix D describes the cross-validation procedure. Furthermore, the
minimum and maximum considered orders are the third and seventh degrees, respectively.

4.1 Partially Linear: Dynamic Panel

The dynamic panel model is

yit � θyit�1 � φ pzitq � α0
g0i t

� εit : θ � 0.5, (29)

where φ is a standard normal probability density function. This setup is a toy model of income
growth, yit, dependent of the level of inequality, zit, and institutional effects, α0

g0i t
. By modeling

zit’s effect through the normal density, the model implies either the lack of or excessive inequality
is not desirable for growth. Intuitively, lack of inequality may stifle incentives to produce, and
excessive inequality can impede innovative entrant firms to access resources.

There are four groups, and each has a stationary process αgt with a unique mean as either 0, 0.25,
0.5, or 1. zit is the sum of αg0i t

and another autoregressive process with zero mean. Furthermore,

the model has heteroskedasticity εit � N
�
0,mint1, y2

it�1u
�
, independently. Conditional on α0, all

processes are independent over the cross-section. Moreover, all first-order autoregressive processes
are generated by standard normal innovations and have 0.7 as its autocorrelation coefficient. The
data generating processes are initialised at the stationary values.

Each group has the same number of memberships, and φ is approximated by a cross-validated
polynomial of zit. The other parameters are estimated as described previously.

Ng T � 5 T � 10 T � 15 T � 20
40 90.1% (12.35%) 94.6% (1.81%) 96.8% (0.27%) 95.4% (0%)

100 85.8% (19.43%) 96.7% (4.55%) 96.4% (1.03%) 96.8% (0.27%)
200 80.5% (19.82%) 96.1% (4.86%) 96.6% (1.17%) 96.5% (0.31%)

Table 1: Coverage Probability for 95% Nominal Confidence Interval for θ̂

The simulated results are tabulated from one thousand trials. The parenthesis reports the
average classification errors13 up to the second decimal, and the simulation shows the coverage is

13The estimated groups are only identified up to a permutation. To quantify the classification error, I
match the estimated group with its members’ modal true group g .
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Ng T � 5 T � 10 T � 15 T � 20
40 83.9% (17.35%) 90.2% (3.52%) 92.3% (0.77%) 91.3% (0.12%)

100 79.9% (19.43%) 91.8% (4.55%) 91.5% (1.03%) 91.7% (0.27%)
200 73.8% (19.82%) 91.2% (4.86%) 92.1% (1.17%) 92.2% (0.31%)

Table 2: Coverage Probability for 90% Nominal Confidence Interval for θ̂

close to the nominal value as the number of periods increase. Furthermore, the classification error
also drops with the number of periods, just as the asymptotic theory predicts.

The reader may notice two patterns from the tables. First, the classification error tends to be
higher with a larger Ng. A larger sample is more likely to populate the empirical distribution’s
tail. Furthermore, the tail observations are likely to be misclassified. This phenomenon explains
the little increase of classification error with larger Ng.

Second, the coverage probability tends to be larger than the nominal value with larger sample
size. Under more numerous observations, zit has more variations to reveal the finite polynomial’s
approximation error on φ.

Ng K � 1 K � 3 K � 5 K � 7
200 84.8% 94.9% 92.7% 91%

Table 3: Coverage Probability for 90% Nominal Confidence Interval for θ̂ when T � 30

Ng K � 1 K � 3 K � 5 K � 7
200 92.3% 97.9% 96.2% 96%

Table 4: Coverage Probability for 95% Nominal Confidence Interval for θ̂ when T � 30

It appears that the approximation error is causing the upward distortion of the coverage prob-
ability. The tables show coverage moves towards the nominal value by increasing K. Hence, the
simulation is consistent with the theory’s asymptotic prediction.

4.2 Two-Step: Production Function

Here, I assess the finite sample performance of my production function estimator when the inter-
mediate material acts as the proxy variable. Also, the Monte Carlo verifies the asymptotic of my
information criterion and classification consistency results when a polynomial non-parametrically
estimates m. The results serve both the interest of my production function application and the
general use of my two-steps estimator.

My data-generating process is an extension of Ackerberg, Caves, and Frazer (2015)’s DGP1
used in their Monte Carlo. Their setup provides a simple solution to the firm’s dynamic profit
maximization problem and, then, simulates the data from firms’ policy functions.

The structural value-added production function is Cobb-Douglas and the gross production
function is

Yit � exp
�
εit � α0

g0i t

	
min

!
C pMitq , exp pωitqKβk

it L
βl
it

)
, (30)
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where C pMitq � Mit �M2
it. The objective is to estimate the output elasticity pβk, βlq. C pMitq’s

monotonicity and convexity ensures the firm’s interior solution. Furthermore, I can easily solve
the optimal choice of Mit from F pMitq’s second-order polynomial form. Ackerberg, Caves, and
Frazer (2015) used F pMitq as a linear function of Mit but, after log-linearization, the filtering
step’s semiparametric form is exactly linear in logged Mit. From a non-parametric perspective,
it is uninteresting to approximate logged Mit with a polynomial of itself. However, the group
productivity extension works perfectly fine with the linear specification.

Here, I outline the productivity process, and Appendix D provides the full firm’s decision
problem, solves the policy functions, and other parametric details. There are three true groups,
i.e., G0 � 3. All three processes εit, α

0
g0i t

, and ηit are mutually independent. Both εit and ηit are

zero-mean independent processes over i but only ε is independent over t. ηit is a stationary first-
order autoregressive process. The simulation generates firms’ input choices based on the solved
policy functions.

After applying the log transformation to the firm’s interior solution of intermediate material,

yit � log
�
eυit � e2υit

�� α0
g0i t

� εit, (31)

where υit � log pMitq. So I use a cross-validated polynomial of υit to non-parametrically estimate
log

�
eυit � e2υit

�
. For simplicity, I estimate R parametrically in the second stage.

In the absence of log
�
eυit � e2υit

�
, the classification problem is on α0

g0i t
� εit. So intuitively, the

classification of g0
i is an easier problem when α0

g0i t
�εit is more similar within the group than between

groups. In my Monte Carlo setup, the classification precision is roughly positively associated with
the ratio

min
g,g1:g�g1

2
�
σ2
αg � σαg ,αg1

	
� �

µg � µg1
�2

σ2
ε

, (32)

where µg, σ
2
αg and σαg ,αg1 , σ

2
ε are αgt’s mean, variance, covariance with αg1 , and εit’s variance,

respectively. Appendix D provides a heuristic argument to why the ratio is informative in the
partially linear semiparametric model.

The ratio suggests classification error decreases when different groups’ αgt become more dis-
similar in mean or correlation. For my Monte Carlo Design 1, I model α0

gt � wα�gt � p1� wqα�t - a
convex combination of two mutually independent first-autoregressive processes, α�gt (group specific
with µg P t�0.33, 0, 0.33u) and α�t (zero mean common trend). Classification error should fall as
the grouped gross productivity processes become less correlated or more different in their means,
i.e. when w Ñ 1.

The ratio also suggests the classification error decreases when
σ2
αg

σ2
ε

increases. That is to say,

the classification precision improves when the firm’s surprise productivity change εit comparably
lowers in uncertainty. More predictable production environment should yield better classification

estimates. For my Monte Carlo Design 2, I set w � 1 and vary
σ2
αg

σ2
ε

by increasing σ2
αg .
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Design 1 Design 2

Figure 1: Y-axis: Average Classification Error | X-axis: w and
σαg
σε

for Design 1 and 2,

respectively.

Solid/Blue line: T � 20. Dashed/Red line: T � 5. Blue/Red: Ng � 100 (Number of
observations for each group). Dark Blue/Dark Red: Ng � 300.

The Figure 1 estimates the average classification error at different parametric values, based on
four hundred trials. And the simulated curves verify the previous predictions. Furthermore, the T �
20 curves are strictly lower than the T � 5 curves. Hence, they verify the asymptotic classification
consistency result in the semiparametric model. Appendix D plots the difference between the mean-
squared error of the elasticity estimates based on the true groups vs. the estimated groups. Their
difference converge towards zero as the classification error vanishes. For Design 1, their difference
also vanishes as w Ñ 0. Closer to w � 0, while classification identification is weaker, the elasticity
estimates’ bias is also smaller.

In the absence of classification error, production function literature has numerous studies of
the two-step estimator’s performance in Monte Carlo simulations. For brevity, I do not provide
additional analysis of output elasticity estimates’ mean-squared error, but next bootstrap results
partially capture the estimator’s performance in mean-squared error. For the inference of output
elasticity estimates, I assess the bootstrap confidence interval’s coverage. I do block bootstrap
with each unit’s time-series constituting a block. Each bootstrap sample constructs new output
elasticity estimates at the second-step conditioning on the original sample’s first-step estimates.
Then I construct the bootstrap confidence interval from the normal critical values and the bootstrap
empirical distribution’s14 standard errors.

T Ng β0
k β0

l

5 100 81.5% 64%
5 300 73.5% 48%

20 100 96.5% 93.5%
20 300 95% 96%

Table 5: Coverage for the 95% Bootstrap Confidence Interval.

14Five hundred bootstrap samples construct the empirical distribution.
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The table reports the coverage probability over four hundred trials and under Design 1 with
w � 0.5. The coverage converges to the nominal value as the number of periods increases. From the
classification perspective, this outcome is not surprising as classification error is near zero at T � 20.
However, the bootstrap confidence interval is able to provide the near correct coverage despite the
data’s serial correlation and cross-sectional dependence. As already mentioned, the bootstrap
theory to account for both serial correlation and cross-sectional dependence is not provided here.
But the simulation provides an applied justification to use bootstrap standard errors for section 5.

For the information criterion, I set the penalty as
λ

T
1
5

Q̂Gmax
15. Then λ is chosen by the following

data-driven approach:
Ĝ P arg min

GPt1,...,Gmaxu
ICλ� pGq , (33)

where λ� P arg min
λPK

�
min

GPt1,...,Gmaxu
ICλ pGq

�
and K :� t0.18, 0.2, ..., 1.8, 2u. The asymptotic theory

covers criterion’s selection consistency over every λ P K because K is a finite and fixed set. So the
asymptotic result easily extends to the information criterion using the data-driven choice of λ.

At w � 0.5 for Design 1 or
σαg
σε

� 1 for Design 2, the simulated classification error is around

17% when T � 5. With each group having 100 members, I assess the above information criterion’s

performance in the simulation at w � 0.5 for Design 1 and at
σαg
σε

� 1 for Design 2. Here, G0 � 3

and the Gmax � 6. All group specifications use the same polynomial order, and the order is chosen
by cross-validation based on the over-specification, G � 6. How to optimally and jointly determine
the polynomial order and the true group G0 is an avenue for future research.

Design T Ĝ � 1 Ĝ � 2 Ĝ � 3 Ĝ � 4 Ĝ � 5 Ĝ � 6
1 T � 5 0% 2.9% 84.7% 12.4% 0% 0%
1 T � 20 0% 0% 99.5% 0.5% 0% 0%
2 T � 5 0% 0.5% 86.5% 13% 0% 0%
2 T � 20 0% 0.1% 99.4% 0.5% 0% 0%

Table 6: Simulated frequency of Ĝ’s realisation based on four hundred simulations at each
specification.

The table shows the information criterion performs well in finite sample even under classification
error. Furthermore, the table verifies the asymptotic consistency result of the information criterion.
The error of both under-selection and over-selection decreases as T increases. As this information
criterion performs well here, I use it for my empirical application.

5 Empirical Application

In this section, I illustrate the empirical performance of my production function estimator. The
data set consists of Chilean manufacturing plants from 1987 to 1996 and is sourced from the census
of Chilean manufacturing plants by Chile’s Instituto Nacional de Estad́ıstica. It covers all firms
with more than ten employees. My construction of capital, labor, and intermediate material follows

15Q̂Gmax
is the least-squared criterion evaluated at the parameters estimated from the Gmax specification.

Having the penalty scaled by Q̂Gmax
ensures the selection is invariant to the data’s scale.
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Gandhi, Navarro, and Rivers (2017a, 2017b). For studying production function estimation, this
data set series has also been used by Levinsohn and Petrin (2003) and Lee, Stoyanov, and Zubanov
(2019).

The data set is available from 1979 to 1996. However, Levinsohn and Petrin (2003) raises
potential structural break concerns for the earlier years. I use the data from 1987 to avoid addressing
those structural breaks. The four sectors Food Product (331), Wood Products (331), Textile (321),
and Fabricated Metal Products (381) are within the data set’s top five largest sectors and included
in all the mentioned previous studies. I restrict my analysis to these four sectors.

Chile experienced significant economic growth from 1987 to 1996, and the years fall into the
well-known Miracle of Chile period. The growth spurt occurred after significant economic reforms
were implemented and can be interpreted as the economy’s convergence to a new steady state. Here,
I use my production function estimator to measure firms’ productivity changes and distribution for
the four sectors. In contrast to previous studies, I allow cross-correlation in firms’ productivity and
firms to have heterogeneous transition dynamics in productivity.

Within a sector, I assume all firms have the same output elasticity pβk, βlq and follow the
Cobb-Douglas (structural value-added) production function,

yit � βkkit � βllit � ωit � α0
g00t

� εit, (34)

with heterogeneous firm productivity. Using my production function estimator, I estimate the
output elasticity for every four sectors. Here, the proxy variable is the firm’s intermediate mate-
rial choice. I use a second order polynomial of pkit, lit, υitq for the filtering step and a third order
polynomial of η̂it�1 to approximate its first-order Markov process.16 Using the second order at the
filtering step is common in the literature because it is parsimonious and has the translog production
function interpretation. As shown in section 4, I use the information criterion to select the number
of groups for each sector - the set of alternatives includes up to ten groups, and the polynomial
is the second order. The main estimates use four groups for Food, and five groups for Metal and
Textile, and six groups for Wood.

Selection:
Both Olley and Pakes (1996) and Griliches and Mairesse (1998) argue for using the unbalanced
panel to mitigate the selection issue from the firm’s entry and exit decisions. Beyond using the
unbalanced panel17, I do not address the selection issue. It is possible to include a near-verbatim
Olley-Pakes style selection correction at the second GMM step, but that is beyond the paper’s
scope.

Sector N Median Ti Mean Ti
Wood 236 4 5.26

Textile 320 6 6.41
Food 1140 8 6.79

Metal 436 5 5.90

Table 7: Ti is the ith firm’s number of periods.

16For robustness, all local optimization steps are done with over five hundred randomly selected initializa-
tion points.

17It is not apparent on which T to substitute into the information criterion in this unbalanced panel
setting. For simplicity, I use the firm’s median number of periods.
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All sectors have a sizable N dimension comparably to their T dimension. In section 4, precise
classification can be achieved even when T is small but N is large. More specifically, this happens
when the firm’s productivity uncertainty is low, i.e. εit is less variable than αgt. Or, when the
different mean-level of αgt are well-separated.

Measurement Error: Within-Variation vs Between-Variation

R2 of the logged input’s AR(1) model.
Logged Input’s Variation Between Firms

Logged Input’s Total Variation

Figure 2: Sources of Inputs’ Variation.

The Figure 2 shows that the inputs are highly serially correlated, and the firms’ between-
variation of inputs dominates the firms’ within-variation of inputs. As discussed in section 3,
Griliches and Hausman (1986)’s intuition suggests the attenuation bias is less severe by applying
between-transformation as opposed to within-transformation in the scenario here. On the mea-
surement error issue, I note that the grouped fixed effects estimator should be more resilient to the
attenuation bias’s effect, as compared to the fixed effects estimator.

Evidence of Heterogeneous Productivity Groups
I find the model specification’s fit is improved by including heterogeneous productivity groups. The
evidence lies with the estimates of εit.

The productivity εit is unaccounted by the firm’s input decisions because it is unpredictable
during the firm’s decision making. From the filtering step, the estimate ε̂it is invariant for all
smooth Hicksian neutral technology choice - only the second GMM step imposes the production
function’s parametric form. Furthermore, the filtering step’s estimates are robust to the standard
selection concern - which arises in the second GMM step. Hence, the estimate ε̂it is reasonably
robust and should be serially uncorrelated under the correct model specification.

The time-invariant Proxy Variable model is nested under the single group specification. The
single group is misspecified, as shown in Figure 3 from the ε̂it’s significant autocorrelation. More-
over, the autocorrelation faces an over 70% reduction by increasing the number of groups to four
or five. The Figure 3 is consistent with the presence of predictable grouped productivity shock in
the firm’s decision environment. For completeness, I also estimate the time-varying Proxy Vari-
able model with the same second-order polynomial. Even in there, ε̂it’s AR(1) model has a R2 of
0.625, 0.748, 0.631, and 0.707 for Wood, Food, Metal, and Textile, respectively.18

18On the over-fitting case, the time-varying Proxy variable model is more parameterized than my het-
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Figure 3: The R2 of ε̂it AR(1) Model over G groups. Selected G is 4 for Food, 5 for Metal
and Textile, and 6 for Wood.

The serial correlation of the proxy variable model’s ε̂it has also been documented by Kasahara,
Schrimpf, and Suzuki (2017), for the Japanese Machine Industry, and by Lee, Stoyanov, and
Zubanov (2019), for Danish manufacturing firms.

As an alternative interpretation, Ackerberg, Caves, and Frazer (2015) models εit as serially
correlated measurement errors on output. These measurement errors are innocuous only if they do
not correlate with the measurement of inputs. However, I find the group with higher productivity
tends to choose more capital input.19 Capturing only innocuous measurement errors is not what
drives down εit’s serial correlation in the graph. Nevertheless, the measurement error can be the
cause behind the residual serial correlation after modeling the groups.

Groups’ Composition:

Sector G1 G2 G3 G4 G5 G6
Food 20.282 47.914 25.914 5.891 N/A N/A

Metal 1.946 18.288 27.743 36.459 15.564 N/A
Textile 10.434 26.621 35.592 23.452 3.901 N/A
Wood 13.699 3.143 29.976 33.441 11.604 8.139

Table 8: Percentage of the sector’s firm in each group. Groups are ordered in increasing
mean level of α̂gt.

erogeneous groups specification. My specification only adds one intercept per group for an additional year.
However, the time-varying proxy variable model adds a new complete set of polynomial coefficients. My
model is a parsimonious way to include heterogeneous productivity over time and different firms.

19Stacked barplots of groups’ mean level inputs are available in Appendix E.
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Sector G1 G2 G3 G4 G5 G6
Food 2.179 13.619 56.136 28.382 N/A N/A

Metal 0.113 4.624 13.406 37.491 44.366 N/A
Textile 1.639 12.844 52.104 30.993 2.421 N/A
Wood 12.15 0.92 20.688 43.03 11.841 11.376

Table 9: Group’s Market Share within Industry. Groups are ordered in increasing mean
level of α̂gt.

The table 8 shows that each estimated group is generally well populated. So the αgt estimates
use ample observations generally across the different groups. Appendix-E has stacked bar plots
showing the differences in mean level input choices among the groups. For all sectors, the group’s
mean level of α̂gt increases with the group’s mean level of capital. A costly capital adjustment
model can explain this association. To avoid frequently adjusting capital, the firm front-loads its
investment needs, and the level of front-loading increases with higher grouped productivity. With
more flexible inputs, the firm weighs more on other short term aspects, from the demand side, in
its input choices. This aspect explains why the mean level grouped productivity does not have a
strict positive relationship with the mean level of intermediate material and labour in the Textile,
Wood, and Metal sectors. However, all three inputs hold a fairly positive association with grouped
productivity over all sectors.

The table 9 shows that the market shares concentrate within a few groups more than what
table 8’s population count suggests. The low productivity groups have a disproportionately small
market share relative to their firm population. Thus these sectors’ aggregate output growths are
more sensitive to the productivity changes in the highly productive groups. It may be interesting
to match the groups with other observable characteristics to better understand the engine behind
the Chilean economic growth in future research.

Output Elasticity Estimates and the Transmission Bias

Sector OLS : β̂k
20 OLS : β̂l G � 1:β̂k G � 1:β̂l G ¡ 1:β̂k G ¡ 1:β̂l

Food 0.341
p0.016q

0.815
p0.032q

0.33
p0.025q

0.539
p0.045q

0.3
p0.024q

0.517
p0.047q

Metal 0.219
p0.028q

0.917
p0.044q

0.225
p0.041q

0.667
p0.066q

0.151
p0.041q

0.657
p0.068q

Textile 0.233
p0.028q

0.78
p0.044q

0.192
p0.04q

0.72
p0.062q

0.176
p0.042q

0.7
p0.06q

Wood 0.195
p0.036q

0.975
p0.063q

0.156
p0.053q

0.895
p0.095q

0.181
p0.057q

0.829
p0.091q

Table 10: Output Elasticity Estimates - last two columns report the heterogeneous
specifications. For the heterogeneous specification: G � 4 for Food, G � 5 for Metal and

Textile, and G � 6 for Wood.

Heuristically, the transmission bias is positive for the elasticity estimate of the more flexible
input. The firm prefers to adjust for more flexible input when productivity increases. Typically,
labour is assumed to be a more flexible input than capital. In line with this theory, the table shows
the OLS β̂l is the largest. Then the estimate of βl further decreases from the single productivity
group specification to the heterogeneous productivity group specification.
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The heterogeneous groups’ elasticity estimates have their return-to-scale hovering between 0.808
and 1.01. They are reasonably close to constant return-to-scale. The reported capital coefficient
estimates are statistically significant from zero.21 These estimates verify the conjecture of grouped
fixed effects being more resilient to attenuation bias as compared to fixed effects.22

As already mentioned, the information criterion selects the number of groups here. In Appendix
E, I plot output elasticity estimates for different G specifications. The output elasticity estimates
are quite sensitive over different group specifications. Finding alternative methods to select the
number of groups for the production function is an avenue for future research.

Productivity Heterogeneity and Productivity Growth
Here, I assess the difference in productivity measurement from accounting for heterogeneous pro-
ductivity groups. The first part captures the difference in productivity growth’s effect on output.
Then the difference in productivity distribution’s dispersion is examined.

G � 1 G ¡ 1
Food 2.078 2.277

Metal 4.98 5.89
Textile 1.5 1.57
Wood 0.81 0.4

Table 11: Average Output Growth Due to Productivity - Controlling for Inputs Level

Using Olley and Pakes (1996) ’s formula, I decompose the annual output growth due to productivity
growth after controlling for inputs level. After averaging them over the years, I report them in table
11 for each sector. For the Metal sector, heterogeneous group specification accounts for at least
18 % more growth from productivity - 9.6 % for the Food sector. Interestingly, the Wood sector
reports a lower rate under heterogeneity. Appendix E shows that the lowest productivity group
experienced a sizeable productivity contraction for some time. Homogeneous specification hides
this fact, and it may explain the difference.

21The statistical significance is at the 5% level if the bootstrap confidence intervals are valid. The paper
has only studied the confidence intervals with 4’s simulation.

22Lee, Stoyanov, and Zubanov (2019) estimated the output elasticity for the Chilean Textile sector. How-
ever, they treated α as a firm fixed effect. Their Textile sector’s capital-output elasticity estimate is at a
single-digit percentage point and statistically insignificant from zero at the 10% level. The usual suspect is
attenuation bias from the capital’s measurement error.
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Figure 4: Metal Sector: α̂gt’s time-path

Figure 4 shows the homogeneous group specification understates the productivity mean level
for most groups in the heterogeneous specification. The graph helps to explain the 18% difference
that is documented in table 11. Appendix E has the plots for the other three sectors. Food and
Textile sectors also exhibit upward growth trends. The Wood sector’s productivity dynamic is more
complex and requires more context for interpretation.

Figure 5: Metal Productivity Fan Charts: 5%,10%,25%,50%,75%,90%,95%. Left: G � 5
and Right: G � 1.

The graph shows the sectors’ weighted23 productivity distribution from 1987 to 1996. The 75
and 90 percentiles increased twice-fold after accounting for heterogeneous groups. Appendix E
presents the fan charts for the other sectors, and the increase in productivity heterogeneity is also
noticeable for the Food and Textile sectors.

23The weights are the firm’s market share in the sector’s sample.
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6 Conclusion

This paper begins with considering the partially linear semiparametric panel model with additive
separable grouped fixed effects and, for the main application, studies its use as the first-step problem
in a two-step estimation. The two-step estimation identifies the parameter τ with a general method
of moment criterion, conditioning on the partially linear model’s parameters.

For the partially linear model, I simultaneously estimate the nonparametric component by
the series approach and classify the group memberships by clustering. Subsequently, I propose
a consistent estimator of τ based on the sample moments criterion, conditioning on the partially
linear model’s estimates. For the partially linear model’s limit theory, I show the linear coefficient
estimator as

?
NT -consistent and asymptotically normal. Furthermore, the grouped fixed effects

estimator and nonparametric estimator are uniformly consistent. In the asymptotic limit, the
classification achieves the Oracle equivalence, and the linear coefficient estimator is efficient as
when the group memberships are known. On estimating the number of groups, I consider the
information criterion and show its selection consistency. For the two-step problem, my estimator
is consistent.

I use my two-steps problem to extend the proxy variable method, extensively used to estimate
the firm’s production function. My extension addresses the proxy variable’s scalar unobservable
problem by introducing firms’ productivity as cross-correlated. Now a firm’s productivity innova-
tion can have positive spillover effects on other firms. Furthermore, for the intermediate material’s
structural value-added model, the marginal product of intermediate material can now be time-
varying. In Monte Carlo simulation, I find my production function estimator can perform well even
under a small T when the groups are well-separated. Furthermore, the information criterion can
overwhelmingly select the correct number of groups under a small T .

For the empirical application, I apply my production function estimator on four large Chilean
manufacturing sectors from 1987 to 1996. In line with the transmission bias intuition, my estima-
tor downward revises the proxy variable’s estimates on the more flexible input’s coefficient - the
output elasticity for labour. For policy analysis, my analysis shows a significant increase in the
productivity distribution’s dispersion after introducing heterogeneous productivity groups. Fur-
thermore, productivity also appears more responsible for output growth in the Metal, Food, and
Textile sectors.

7 Extension

The paper’s main section only considered the time-invariant proxy variable setup. However, it
can easily extend to finitely many known structural breaks setup. Formally, there are known
breakpoints Bj (j � 1, ..., J) and, between any breakpoints j � 1 and j, ht � hj which satisfies the

inversion step. Then the strategy ht pkit, lit, ηitq �
¸

jPt1,...,J�1u

tBj�1 ¤ t ¤ Bjuhj pkit, lit, ηitq, with

B0 � 1 and BJ�1 � T as the convention. In this setup, the partially linear model’s modified least
squared criterion is

1

NT

Ņ

i�1

Ţ

t�1

J�1̧

j�1

�
yit � x1itθ � pK pkit, lit, υitqβK,j � α0

git

�2 tBj�1 ¤ t ¤ Bju, (35)

over βK,j , αgt, and gi. The new estimate is

m̂t pkit, lit, υitq �
¸

jPt1,...,J�1u

tBj�1 ¤ t ¤ BjupK pkit, lit, υitq β̂K,j . (36)
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Then in the second step, the moments should be constructed with

ηt

�
kit, lit, τ, tνjuJ�1

j�1

	
� pm̂t pkit, lit, υitq � f pkit, lit; τq � νjq tBj�1 ¤ t ¤ Bju . (37)

The same set of previous moments should identify τ and νj . Even though there are additional νj ,
only one shows up in each moment condition per period.

By adding additional notations, the proofs can be adapted using near-identical main assump-
tions for all the asymptotic results to hold in this extension. The extension is allowed because
the number of non-parametric functions is fixed and not growing with T . Hence, in practice, it is
cautious to keep only a few number of breakpoints. Heuristically speaking, over-fitting the number
of breakpoints can weaken the data’s identification of the group memberships. Then the data may
struggle to differentiate the breakpoints’ effects separately from the different groups’ αgts.

Stretching the idea further is having the criterion to locate the known J many break points. A
naive way to do this is optimizing the modified least-squared criterion also over the Bjs. The local
optimization algorithm is presented in the next page.

Algorithm 2: Estimating B0
j with θ0, β0,K,j, g0

i , and α0
gt

Initialize
 
ĝir0s

(N
i�1

and
!
B̂jr0s

)J
j�1

subjected to Bj   Bj�1;

Using
 
ĝir0s

(N
i�1

and
!
B̂jr0s

)J
j�1

, estimate θ̂r0s, β̂
K,j
r0s , and α̂gtr0s by minimizing the modified

least-squared criterion;
while convergence is not achieved on the kth iteration do

By using the kth iteration’s
!
B̂jrks

)J
j�1

, θ̂rks, β̂
K,j
rks and α̂gtrks, update

 
ĝirk�1s

(N
i�1

to

minimize the least squared criterion;
for i in 1:J do

Using θ̂rks, β̂
K,j
rks , α̂gtrks, and

 
ĝirk�1s

(N
i�1

, record the modified least squared criterion

by moving B̂jrks up by one period;

Using θ̂rks, β̂
K,j
rks , α̂gtrks, and

 
ĝirk�1s

(N
i�1

, record the modified least squared criterion

by moving B̂jrks down by one period;

end
Find the single move leading to the most reduction of the modified least squared
criterion within the for-loop;

Update to
!
B̂jrk�1s

)J
j�1

by implementing that single move whilst keeping other break

points the same;

Using
 
ĝirk�1s

(N
i�1

and
!
B̂jrk�1s

)J
j�1

, estimate θ̂rk�1s, β̂
K,j
rk�1s and α̂gtrk�1s by minimizing

the modified least-squared criterion based;
Check for convergence of the modified least squared criterion;

end

The asymptotics of this further extension is not covered here.
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